Nuprl Lemma : append_split2

[T:Type]
  ∀L:T List
    ∀[P:ℕ||L|| ⟶ ℙ]
      ((∀x:ℕ||L||. Dec(P x))
       (∀i,j:ℕ||L||.  ((P i)  supposing i < j))
       (∃L_1,L_2:T List. ((L (L_1 L_2) ∈ (T List)) ∧ (∀i:ℕ||L||. (P ⇐⇒ ||L_1|| ≤ i)))))


Proof




Definitions occuring in Statement :  length: ||as|| append: as bs list: List int_seg: {i..j-} less_than: a < b decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: le: A ≤ B all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] prop: and: P ∧ Q subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] lelt: i ≤ j < k guard: {T} all: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top so_apply: x[s] cand: c∧ B int_iseg: {i...j} true: True iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B nat: less_than': less_than'(a;b) ge: i ≥  label: ...$L... t
Lemmas referenced :  length_wf all_wf int_seg_wf not_wf int_seg_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf decidable__exists_int_seg decidable__and2 decidable__all_int_seg decidable__not less_than_wf decidable_wf list_wf firstn_wf nth_tl_wf equal_wf squash_wf true_wf append_firstn_lastn subtype_rel_sets le_wf decidable__le intformle_wf int_formula_prop_le_lemma iff_weakening_equal less_than'_wf append_wf length-append length_firstn exists_wf iff_wf decidable__equal_int itermConstant_wf intformeq_wf int_term_value_constant_lemma int_formula_prop_eq_lemma nil_wf append_back_nil nat_wf false_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma set_wf primrec-wf2 nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity natural_numberEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality productEquality applyEquality functionExtensionality because_Cache sqequalRule setElimination rename dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination unionElimination imageElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll isect_memberFormation lambdaFormation instantiate independent_functionElimination functionEquality universeEquality isectEquality equalityTransitivity equalitySymmetry setEquality applyLambdaEquality imageMemberEquality baseClosed independent_pairEquality axiomEquality hyp_replacement hypothesis_subsumption

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[P:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}x:\mBbbN{}||L||.  Dec(P  x))
            {}\mRightarrow{}  (\mforall{}i,j:\mBbbN{}||L||.    ((P  i)  {}\mRightarrow{}  P  j  supposing  i  <  j))
            {}\mRightarrow{}  (\mexists{}L$_{1}$,L$_{2}$:T  List.  ((L  =  (L$_{1\mbackslash{}\000Cff7d$  @  L$_{2}$))  \mwedge{}  (\mforall{}i:\mBbbN{}||L||.  (P  i  \mLeftarrow{}{}\mRightarrow{}  ||L$_{1}$||  \mleq{}  i\000C)))))



Date html generated: 2017_04_14-AM-09_25_30
Last ObjectModification: 2017_02_27-PM-04_00_30

Theory : list_1


Home Index