Nuprl Lemma : append_firstn_lastn

[T:Type]. ∀[L:T List]. ∀[n:{0...||L||}].  ((firstn(n;L) nth_tl(n;L)) L ∈ (T List))


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) length: ||as|| nth_tl: nth_tl(n;as) append: as bs list: List int_iseg: {i...j} uall: [x:A]. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] int_iseg: {i...j} so_apply: x[s] implies:  Q firstn: firstn(n;as) nth_tl: nth_tl(n;as) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] append: as bs bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) squash: T cand: c∧ B decidable: Dec(P) le: A ≤ B true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction uall_wf int_iseg_wf length_wf equal_wf list_wf append_wf firstn_wf nth_tl_wf length_of_nil_lemma list_ind_nil_lemma reduce_tl_nil_lemma nth_tl_nil subtract_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int nil_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf length_of_cons_lemma list_ind_cons_lemma reduce_tl_cons_lemma lt_int_wf assert_of_lt_int int_iseg_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf cons_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf iff_weakening_equal less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality natural_numberEquality cumulativity hypothesis setElimination rename because_Cache independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp instantiate int_eqEquality intEquality independent_pairFormation computeAll applyEquality imageElimination dependent_set_memberEquality addEquality pointwiseFunctionality baseApply closedConclusion baseClosed productEquality imageMemberEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[n:\{0...||L||\}].    ((firstn(n;L)  @  nth\_tl(n;L))  =  L)



Date html generated: 2017_04_14-AM-09_25_18
Last ObjectModification: 2017_02_27-PM-03_59_38

Theory : list_1


Home Index