Step
*
2
of Lemma
append_split2
1. [T] : Type
2. L : T List
3. [P] : ℕ||L|| ⟶ ℙ
4. ∀x:ℕ||L||. Dec(P x)
5. ∀i,j:ℕ||L||. ((P i)
⇒ P j supposing i < j)
6. ¬(∃i:ℕ||L||. ((P i) ∧ (∀j:ℕi. (¬(P j)))))
⊢ ∃L_1,L_2:T List. ((L = (L_1 @ L_2) ∈ (T List)) ∧ (∀i:ℕ||L||. (P i
⇐⇒ ||L_1|| ≤ i)))
BY
{ (InstConcl [L;[]] THEN Auto) }
1
1. T : Type
2. L : T List
3. P : ℕ||L|| ⟶ ℙ
4. ∀x:ℕ||L||. Dec(P x)
5. ∀i,j:ℕ||L||. ((P i)
⇒ P j supposing i < j)
6. ¬(∃i:ℕ||L||. ((P i) ∧ (∀j:ℕi. (¬(P j)))))
7. L = (L @ []) ∈ (T List)
8. i : ℕ||L||
9. P i
⊢ ||L|| ≤ i
Latex:
Latex:
1. [T] : Type
2. L : T List
3. [P] : \mBbbN{}||L|| {}\mrightarrow{} \mBbbP{}
4. \mforall{}x:\mBbbN{}||L||. Dec(P x)
5. \mforall{}i,j:\mBbbN{}||L||. ((P i) {}\mRightarrow{} P j supposing i < j)
6. \mneg{}(\mexists{}i:\mBbbN{}||L||. ((P i) \mwedge{} (\mforall{}j:\mBbbN{}i. (\mneg{}(P j)))))
\mvdash{} \mexists{}L$_{1}$,L$_{2}$:T List. ((L = (L$_{1}\mbackslash{}ff2\000C4 @ L$_{2}$)) \mwedge{} (\mforall{}i:\mBbbN{}||L||. (P i \mLeftarrow{}{}\mRightarrow{} ||L$_{1}$|| \mleq{} i)))
By
Latex:
(InstConcl [L;[]] THEN Auto)
Home
Index