Nuprl Lemma : bl-exists-map
∀[f,L,P:Top].  ((∃x∈map(f;L).P[x])_b ~ (∃x∈L.P[f x])_b)
Proof
Definitions occuring in Statement : 
bl-exists: (∃x∈L.P[x])_b
, 
map: map(f;as)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bl-exists: (∃x∈L.P[x])_b
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
Lemmas referenced : 
reduce-map, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[f,L,P:Top].    ((\mexists{}x\mmember{}map(f;L).P[x])\_b  \msim{}  (\mexists{}x\mmember{}L.P[f  x])\_b)
Date html generated:
2016_05_14-PM-02_11_59
Last ObjectModification:
2015_12_26-PM-05_02_53
Theory : list_1
Home
Index