Nuprl Lemma : bl-exists-nil
∀[f:Top]. ((∃x∈[].f[x])_b ~ ff)
Proof
Definitions occuring in Statement :
bl-exists: (∃x∈L.P[x])_b
,
nil: []
,
bfalse: ff
,
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
sqequal: s ~ t
Definitions unfolded in proof :
bl-exists: (∃x∈L.P[x])_b
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
top: Top
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
reduce_nil_lemma,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
cut,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
isect_memberFormation,
introduction,
sqequalAxiom
Latex:
\mforall{}[f:Top]. ((\mexists{}x\mmember{}[].f[x])\_b \msim{} ff)
Date html generated:
2016_05_14-PM-02_10_29
Last ObjectModification:
2015_12_26-PM-05_04_32
Theory : list_1
Home
Index