Nuprl Lemma : comb_for_iseg_wf
λT,l1,l2,z. l1 ≤ l2 ∈ T:Type ⟶ l1:(T List) ⟶ l2:(T List) ⟶ (↓True) ⟶ ℙ
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
list: T List
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
iseg_wf, 
squash_wf, 
true_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mlambda{}T,l1,l2,z.  l1  \mleq{}  l2  \mmember{}  T:Type  {}\mrightarrow{}  l1:(T  List)  {}\mrightarrow{}  l2:(T  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}
Date html generated:
2019_06_20-PM-01_28_30
Last ObjectModification:
2018_10_05-AM-09_40_12
Theory : list_1
Home
Index