Nuprl Lemma : comb_for_iseg_wf

λT,l1,l2,z. l1 ≤ l2 ∈ T:Type ⟶ l1:(T List) ⟶ l2:(T List) ⟶ (↓True) ⟶ ℙ


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 list: List prop: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  iseg_wf squash_wf true_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType,  Error :inhabitedIsType,  universeEquality

Latex:
\mlambda{}T,l1,l2,z.  l1  \mleq{}  l2  \mmember{}  T:Type  {}\mrightarrow{}  l1:(T  List)  {}\mrightarrow{}  l2:(T  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}



Date html generated: 2019_06_20-PM-01_28_30
Last ObjectModification: 2018_10_05-AM-09_40_12

Theory : list_1


Home Index