Step
*
1
2
1
of Lemma
cons_member!
1. [T] : Type
2. l : T List
3. a : T
4. x : T
5. i : ℕ
6. i < ||[a / l]||
7. i ≠ 0
8. 0 < i
9. x = [a / l][i] ∈ T
10. ∀j:ℕ. (j < ||[a / l]||
⇒ (x = [a / l][j] ∈ T)
⇒ (j = i ∈ ℕ))
⊢ ((x = a ∈ T) ∧ (¬(x ∈ l)))
∨ ((∃i:ℕ. (i < ||l|| c∧ ((x = l[i] ∈ T) ∧ (∀j:ℕ. (j < ||l||
⇒ (x = l[j] ∈ T)
⇒ (j = i ∈ ℕ)))))) ∧ (¬(x = a ∈ T)))
BY
{ (RWW "select_cons_tl" 0 THEN Auto) }
1
1. [T] : Type
2. l : T List
3. a : T
4. x : T
5. i : ℕ
6. i < ||[a / l]||
7. i ≠ 0
8. 0 < i
9. x = [a / l][i] ∈ T
10. ∀j:ℕ. (j < ||[a / l]||
⇒ (x = [a / l][j] ∈ T)
⇒ (j = i ∈ ℕ))
⊢ ((x = a ∈ T) ∧ (¬(x ∈ l)))
∨ ((∃i:ℕ. (i < ||l|| c∧ ((x = l[i] ∈ T) ∧ (∀j:ℕ. (j < ||l||
⇒ (x = l[j] ∈ T)
⇒ (j = i ∈ ℕ)))))) ∧ (¬(x = a ∈ T)))
Latex:
Latex:
1. [T] : Type
2. l : T List
3. a : T
4. x : T
5. i : \mBbbN{}
6. i < ||[a / l]||
7. i \mneq{} 0
8. 0 < i
9. x = [a / l][i]
10. \mforall{}j:\mBbbN{}. (j < ||[a / l]|| {}\mRightarrow{} (x = [a / l][j]) {}\mRightarrow{} (j = i))
\mvdash{} ((x = a) \mwedge{} (\mneg{}(x \mmember{} l)))
\mvee{} ((\mexists{}i:\mBbbN{}. (i < ||l|| c\mwedge{} ((x = l[i]) \mwedge{} (\mforall{}j:\mBbbN{}. (j < ||l|| {}\mRightarrow{} (x = l[j]) {}\mRightarrow{} (j = i)))))) \mwedge{} (\mneg{}(x = a)))
By
Latex:
(RWW "select\_cons\_tl" 0 THEN Auto)
Home
Index