Nuprl Lemma : cons_member!

[T:Type]. ∀l:T List. ∀a,x:T.  ((x ∈[a l]) ⇐⇒ ((x a ∈ T) ∧ (x ∈ l))) ∨ ((x ∈l) ∧ (x a ∈ T))))


Proof




Definitions occuring in Statement :  l_member!: (x ∈l) l_member: (x ∈ l) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A or: P ∨ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  l_member!: (x ∈l) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T cand: c∧ B nat: prop: uimplies: supposing a top: Top ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q uiff: uiff(P;Q) sq_type: SQType(T) guard: {T} nequal: a ≠ b ∈  select: L[n] cons: [a b] l_member: (x ∈ l) less_than: a < b squash: T le: A ≤ B less_than': less_than'(a;b) nat_plus: + true: True
Lemmas referenced :  nat_wf less_than_wf length_wf cons_wf select_wf length_of_cons_lemma istype-void nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf set_subtype_base le_wf int_subtype_base not_wf l_member_wf equal_wf istype-universe list_wf decidable__assert eq_int_wf assert_of_eq_int subtype_base_sq decidable__equal_int intformeq_wf int_formula_prop_eq_lemma neg_assert_of_eq_int decidable__lt intformless_wf int_formula_prop_less_lemma itermAdd_wf int_term_value_add_lemma select-cons-tl add-subtract-cancel subtract_wf itermSubtract_wf int_term_value_subtract_lemma non_neg_length istype-false select-cons-hd add_nat_plus length_wf_nat nat_plus_properties add-is-int-iff false_wf squash_wf true_wf select_cons_tl subtype_rel_self iff_weakening_equal select_cons_hd
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  independent_pairFormation Error :productIsType,  Error :universeIsType,  cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality Error :equalityIsType1,  Error :inhabitedIsType,  cumulativity because_Cache independent_isectElimination dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination natural_numberEquality unionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :functionIsType,  Error :equalityIsType4,  applyEquality intEquality Error :unionIsType,  universeEquality productElimination instantiate equalityTransitivity equalitySymmetry Error :dependent_set_memberEquality_alt,  Error :inlFormation_alt,  addEquality imageElimination applyLambdaEquality Error :inrFormation_alt,  imageMemberEquality baseClosed pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}[T:Type].  \mforall{}l:T  List.  \mforall{}a,x:T.    ((x  \mmember{}!  [a  /  l])  \mLeftarrow{}{}\mRightarrow{}  ((x  =  a)  \mwedge{}  (\mneg{}(x  \mmember{}  l)))  \mvee{}  ((x  \mmember{}!  l)  \mwedge{}  (\mneg{}(x  =  a))))



Date html generated: 2019_06_20-PM-01_26_00
Last ObjectModification: 2018_10_05-PM-04_03_57

Theory : list_1


Home Index