Nuprl Lemma : cons_member!
∀[T:Type]. ∀l:T List. ∀a,x:T.  ((x ∈! [a / l]) 
⇐⇒ ((x = a ∈ T) ∧ (¬(x ∈ l))) ∨ ((x ∈! l) ∧ (¬(x = a ∈ T))))
Proof
Definitions occuring in Statement : 
l_member!: (x ∈! l)
, 
l_member: (x ∈ l)
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
l_member!: (x ∈! l)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
cand: A c∧ B
, 
nat: ℕ
, 
prop: ℙ
, 
uimplies: b supposing a
, 
top: Top
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
nequal: a ≠ b ∈ T 
, 
select: L[n]
, 
cons: [a / b]
, 
l_member: (x ∈ l)
, 
less_than: a < b
, 
squash: ↓T
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
true: True
Lemmas referenced : 
nat_wf, 
less_than_wf, 
length_wf, 
cons_wf, 
select_wf, 
length_of_cons_lemma, 
istype-void, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
not_wf, 
l_member_wf, 
equal_wf, 
istype-universe, 
list_wf, 
decidable__assert, 
eq_int_wf, 
assert_of_eq_int, 
subtype_base_sq, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
neg_assert_of_eq_int, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
select-cons-tl, 
add-subtract-cancel, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
non_neg_length, 
istype-false, 
select-cons-hd, 
add_nat_plus, 
length_wf_nat, 
nat_plus_properties, 
add-is-int-iff, 
false_wf, 
squash_wf, 
true_wf, 
select_cons_tl, 
subtype_rel_self, 
iff_weakening_equal, 
select_cons_hd
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
Error :productIsType, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
Error :equalityIsType1, 
Error :inhabitedIsType, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :functionIsType, 
Error :equalityIsType4, 
applyEquality, 
intEquality, 
Error :unionIsType, 
universeEquality, 
productElimination, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
Error :dependent_set_memberEquality_alt, 
Error :inlFormation_alt, 
addEquality, 
imageElimination, 
applyLambdaEquality, 
Error :inrFormation_alt, 
imageMemberEquality, 
baseClosed, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion
Latex:
\mforall{}[T:Type].  \mforall{}l:T  List.  \mforall{}a,x:T.    ((x  \mmember{}!  [a  /  l])  \mLeftarrow{}{}\mRightarrow{}  ((x  =  a)  \mwedge{}  (\mneg{}(x  \mmember{}  l)))  \mvee{}  ((x  \mmember{}!  l)  \mwedge{}  (\mneg{}(x  =  a))))
Date html generated:
2019_06_20-PM-01_26_00
Last ObjectModification:
2018_10_05-PM-04_03_57
Theory : list_1
Home
Index