Nuprl Lemma : find-combine-cons

[cmp,x,l:Top].
  (find-combine(cmp;[x l]) eval tst cmp in
                               if (tst =z 0) then inl x
                               if 0 <tst then inr ⋅ 
                               else find-combine(cmp;l)
                               fi )


Proof




Definitions occuring in Statement :  find-combine: find-combine(cmp;l) cons: [a b] callbyvalue: callbyvalue ifthenelse: if then else fi  lt_int: i <j eq_int: (i =z j) it: uall: [x:A]. B[x] top: Top apply: a inr: inr  inl: inl x natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T find-combine: find-combine(cmp;l) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_cons_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[cmp,x,l:Top].
    (find-combine(cmp;[x  /  l])  \msim{}  eval  tst  =  cmp  x  in
                                                              if  (tst  =\msubz{}  0)  then  inl  x
                                                              if  0  <z  tst  then  inr  \mcdot{} 
                                                              else  find-combine(cmp;l)
                                                              fi  )



Date html generated: 2016_05_14-PM-02_40_28
Last ObjectModification: 2015_12_26-PM-02_44_24

Theory : list_1


Home Index