Nuprl Lemma : find-combine-nil

[cmp:Top]. (find-combine(cmp;[]) inr ⋅ )


Proof




Definitions occuring in Statement :  find-combine: find-combine(cmp;l) nil: [] it: uall: [x:A]. B[x] top: Top inr: inr  sqequal: t
Definitions unfolded in proof :  find-combine: find-combine(cmp;l) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3] uall: [x:A]. B[x]
Lemmas referenced :  list_ind_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[cmp:Top].  (find-combine(cmp;[])  \msim{}  inr  \mcdot{}  )



Date html generated: 2016_05_14-PM-02_40_19
Last ObjectModification: 2015_12_26-PM-02_44_33

Theory : list_1


Home Index