Nuprl Lemma : find-combine-nil
∀[cmp:Top]. (find-combine(cmp;[]) ~ inr ⋅ )
Proof
Definitions occuring in Statement : 
find-combine: find-combine(cmp;l)
, 
nil: []
, 
it: ⋅
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
inr: inr x 
, 
sqequal: s ~ t
Definitions unfolded in proof : 
find-combine: find-combine(cmp;l)
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
list_ind_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[cmp:Top].  (find-combine(cmp;[])  \msim{}  inr  \mcdot{}  )
Date html generated:
2016_05_14-PM-02_40_19
Last ObjectModification:
2015_12_26-PM-02_44_33
Theory : list_1
Home
Index