Step
*
2
of Lemma
l_before_append_iff
1. [T] : Type
2. u : T
3. v : T List
4. ∀B:T List. ∀x,y:T. (x before y ∈ v @ B
⇐⇒ x before y ∈ v ∨ x before y ∈ B ∨ ((x ∈ v) ∧ (y ∈ B)))
⊢ ∀B:T List. ∀x,y:T. (x before y ∈ [u / v] @ B
⇐⇒ x before y ∈ [u / v] ∨ x before y ∈ B ∨ ((x ∈ [u / v]) ∧ (y ∈ B)))
BY
{ (((Reduce 0 THEN RWO "cons_member" 0) THENM RWO "cons_before" 0) THEN Auto THEN SplitOrHyps) }
1
1. [T] : Type
2. u : T
3. v : T List
4. ∀B:T List. ∀x,y:T. (x before y ∈ v @ B
⇐⇒ x before y ∈ v ∨ x before y ∈ B ∨ ((x ∈ v) ∧ (y ∈ B)))
5. B : T List
6. x : T
7. y : T
8. (x = u ∈ T) ∧ (y ∈ v @ B)
⊢ (((x = u ∈ T) ∧ (y ∈ v)) ∨ x before y ∈ v) ∨ x before y ∈ B ∨ (((x = u ∈ T) ∨ (x ∈ v)) ∧ (y ∈ B))
2
1. [T] : Type
2. u : T
3. v : T List
4. ∀B:T List. ∀x,y:T. (x before y ∈ v @ B
⇐⇒ x before y ∈ v ∨ x before y ∈ B ∨ ((x ∈ v) ∧ (y ∈ B)))
5. B : T List
6. x : T
7. y : T
8. x before y ∈ v @ B
⊢ (((x = u ∈ T) ∧ (y ∈ v)) ∨ x before y ∈ v) ∨ x before y ∈ B ∨ (((x = u ∈ T) ∨ (x ∈ v)) ∧ (y ∈ B))
3
1. [T] : Type
2. u : T
3. v : T List
4. ∀B:T List. ∀x,y:T. (x before y ∈ v @ B
⇐⇒ x before y ∈ v ∨ x before y ∈ B ∨ ((x ∈ v) ∧ (y ∈ B)))
5. B : T List
6. x : T
7. y : T
8. (x = u ∈ T) ∧ (y ∈ v)
⊢ ((x = u ∈ T) ∧ (y ∈ v @ B)) ∨ x before y ∈ v @ B
4
1. [T] : Type
2. u : T
3. v : T List
4. ∀B:T List. ∀x,y:T. (x before y ∈ v @ B
⇐⇒ x before y ∈ v ∨ x before y ∈ B ∨ ((x ∈ v) ∧ (y ∈ B)))
5. B : T List
6. x : T
7. y : T
8. x before y ∈ v
⊢ ((x = u ∈ T) ∧ (y ∈ v @ B)) ∨ x before y ∈ v @ B
5
1. [T] : Type
2. u : T
3. v : T List
4. ∀B:T List. ∀x,y:T. (x before y ∈ v @ B
⇐⇒ x before y ∈ v ∨ x before y ∈ B ∨ ((x ∈ v) ∧ (y ∈ B)))
5. B : T List
6. x : T
7. y : T
8. x before y ∈ B
⊢ ((x = u ∈ T) ∧ (y ∈ v @ B)) ∨ x before y ∈ v @ B
6
1. [T] : Type
2. u : T
3. v : T List
4. ∀B:T List. ∀x,y:T. (x before y ∈ v @ B
⇐⇒ x before y ∈ v ∨ x before y ∈ B ∨ ((x ∈ v) ∧ (y ∈ B)))
5. B : T List
6. x : T
7. y : T
8. ((x = u ∈ T) ∨ (x ∈ v)) ∧ (y ∈ B)
⊢ ((x = u ∈ T) ∧ (y ∈ v @ B)) ∨ x before y ∈ v @ B
Latex:
Latex:
1. [T] : Type
2. u : T
3. v : T List
4. \mforall{}B:T List. \mforall{}x,y:T.
(x before y \mmember{} v @ B \mLeftarrow{}{}\mRightarrow{} x before y \mmember{} v \mvee{} x before y \mmember{} B \mvee{} ((x \mmember{} v) \mwedge{} (y \mmember{} B)))
\mvdash{} \mforall{}B:T List. \mforall{}x,y:T.
(x before y \mmember{} [u / v] @ B \mLeftarrow{}{}\mRightarrow{} x before y \mmember{} [u / v] \mvee{} x before y \mmember{} B \mvee{} ((x \mmember{} [u / v]) \mwedge{} (y \mmember{} B)))
By
Latex:
(((Reduce 0 THEN RWO "cons\_member" 0) THENM RWO "cons\_before" 0) THEN Auto THEN SplitOrHyps)
Home
Index