Step
*
1
1
2
3
of Lemma
l_disjoint-representatives
1. T : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. u : T List
4. v : T List List
5. 0 < ||u||
6. (∀as∈v.0 < ||as||)
7. reps : T List List
8. reps ⊆ v
9. (∀as∈v.(∃rep∈reps. ¬l_disjoint(T;as;rep)))
10. ∀i:ℕ||reps||. ∀j:ℕi. l_disjoint(T;reps[j];reps[i])
11. ¬(∃rep∈reps. ¬l_disjoint(T;u;rep))
12. [u / reps] ⊆ [u / v]
13. (∀as∈[u / v].(∃rep∈[u / reps]. ¬l_disjoint(T;as;rep)))
14. i : ℕ||[u / reps]||
15. j : ℕi
⊢ l_disjoint(T;[u / reps][j];[u / reps][i])
BY
{ (Assert (∀rep1,rep2∈[u / reps]. l_disjoint(T;rep1;rep2)) BY
((BLemma `pairwise-cons` THEN Auto)
THEN D 0
THEN Auto
THEN SupposeNot
THEN D -8
THEN With ⌜i1⌝ (D 0)⋅
THEN Auto)) }
1
1. T : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. u : T List
4. v : T List List
5. 0 < ||u||
6. (∀as∈v.0 < ||as||)
7. reps : T List List
8. reps ⊆ v
9. (∀as∈v.(∃rep∈reps. ¬l_disjoint(T;as;rep)))
10. ∀i:ℕ||reps||. ∀j:ℕi. l_disjoint(T;reps[j];reps[i])
11. ¬(∃rep∈reps. ¬l_disjoint(T;u;rep))
12. [u / reps] ⊆ [u / v]
13. (∀as∈[u / v].(∃rep∈[u / reps]. ¬l_disjoint(T;as;rep)))
14. i : ℕ||[u / reps]||
15. j : ℕi
16. (∀rep1,rep2∈[u / reps]. l_disjoint(T;rep1;rep2))
⊢ l_disjoint(T;[u / reps][j];[u / reps][i])
Latex:
Latex:
1. T : Type
2. \mforall{}x,y:T. Dec(x = y)
3. u : T List
4. v : T List List
5. 0 < ||u||
6. (\mforall{}as\mmember{}v.0 < ||as||)
7. reps : T List List
8. reps \msubseteq{} v
9. (\mforall{}as\mmember{}v.(\mexists{}rep\mmember{}reps. \mneg{}l\_disjoint(T;as;rep)))
10. \mforall{}i:\mBbbN{}||reps||. \mforall{}j:\mBbbN{}i. l\_disjoint(T;reps[j];reps[i])
11. \mneg{}(\mexists{}rep\mmember{}reps. \mneg{}l\_disjoint(T;u;rep))
12. [u / reps] \msubseteq{} [u / v]
13. (\mforall{}as\mmember{}[u / v].(\mexists{}rep\mmember{}[u / reps]. \mneg{}l\_disjoint(T;as;rep)))
14. i : \mBbbN{}||[u / reps]||
15. j : \mBbbN{}i
\mvdash{} l\_disjoint(T;[u / reps][j];[u / reps][i])
By
Latex:
(Assert (\mforall{}rep1,rep2\mmember{}[u / reps]. l\_disjoint(T;rep1;rep2)) BY
((BLemma `pairwise-cons` THEN Auto)
THEN D 0
THEN Auto
THEN SupposeNot
THEN D -8
THEN With \mkleeneopen{}i1\mkleeneclose{} (D 0)\mcdot{}
THEN Auto))
Home
Index