Nuprl Lemma : l_disjoint-representatives

[T:Type]
  ((∀x,y:T.  Dec(x y ∈ T))
   (∀L:T List List
        ∃reps:T List List
         (reps ⊆ L ∧ (∀as∈L.(∃rep∈reps. ¬l_disjoint(T;as;rep))) ∧ (∀rep1,rep2∈reps.  l_disjoint(T;rep1;rep2))) 
        supposing (∀as∈L.0 < ||as||)))


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) l_disjoint: l_disjoint(T;l1;l2) l_contains: A ⊆ B l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) length: ||as|| list: List less_than: a < b decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  pairwise: (∀x,y∈L.  P[x; y]) uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a prop: so_apply: x[s] and: P ∧ Q int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top less_than: a < b squash: T l_all: (∀x∈L.P[x]) cand: c∧ B l_disjoint: l_disjoint(T;l1;l2) subtype_rel: A ⊆B uiff: uiff(P;Q) iff: ⇐⇒ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] rev_implies:  Q l_exists: (∃x∈L. P[x]) le: A ≤ B less_than': less_than'(a;b) nat_plus: + true: True select: L[n] cons: [a b] subtract: m ge: i ≥  so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  list_induction list_wf isect_wf l_all_wf l_member_wf less_than_wf length_wf exists_wf l_contains_wf l_exists_wf not_wf l_disjoint_wf all_wf int_seg_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma member-less_than nil_wf length_of_nil_lemma l_contains_nil l_all_nil l_all_wf_nil cons_wf length_of_cons_lemma add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf decidable_wf equal_wf l_all_cons decidable__l_exists decidable__not decidable__l_disjoint l_contains_transitivity list_ind_cons_lemma list_ind_nil_lemma l_contains_append2 l_contains_cons cons_member add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties intformeq_wf int_formula_prop_eq_lemma lelt_wf list-cases product_subtype_list add-member-int_seg2 subtract_wf itermSubtract_wf int_term_value_subtract_lemma non_neg_length select-cons-tl add-subtract-cancel pairwise-cons
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality hypothesis lambdaEquality setElimination rename natural_numberEquality because_Cache setEquality productEquality independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination independent_functionElimination applyEquality addEquality pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp baseApply closedConclusion baseClosed universeEquality inlFormation dependent_set_memberEquality imageMemberEquality applyLambdaEquality hypothesis_subsumption instantiate

Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}L:T  List  List
                \mexists{}reps:T  List  List
                  (reps  \msubseteq{}  L
                  \mwedge{}  (\mforall{}as\mmember{}L.(\mexists{}rep\mmember{}reps.  \mneg{}l\_disjoint(T;as;rep)))
                  \mwedge{}  (\mforall{}rep1,rep2\mmember{}reps.    l\_disjoint(T;rep1;rep2))) 
                supposing  (\mforall{}as\mmember{}L.0  <  ||as||)))



Date html generated: 2017_04_17-AM-08_13_51
Last ObjectModification: 2017_02_27-PM-04_40_08

Theory : list_1


Home Index