Nuprl Lemma : l_disjoint-representatives
∀[T:Type]
  ((∀x,y:T.  Dec(x = y ∈ T))
  
⇒ (∀L:T List List
        ∃reps:T List List
         (reps ⊆ L ∧ (∀as∈L.(∃rep∈reps. ¬l_disjoint(T;as;rep))) ∧ (∀rep1,rep2∈reps.  l_disjoint(T;rep1;rep2))) 
        supposing (∀as∈L.0 < ||as||)))
Proof
Definitions occuring in Statement : 
pairwise: (∀x,y∈L.  P[x; y])
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
l_contains: A ⊆ B
, 
l_exists: (∃x∈L. P[x])
, 
l_all: (∀x∈L.P[x])
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
pairwise: (∀x,y∈L.  P[x; y])
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
l_all: (∀x∈L.P[x])
, 
cand: A c∧ B
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
rev_implies: P 
⇐ Q
, 
l_exists: (∃x∈L. P[x])
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
ge: i ≥ j 
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_induction, 
list_wf, 
isect_wf, 
l_all_wf, 
l_member_wf, 
less_than_wf, 
length_wf, 
exists_wf, 
l_contains_wf, 
l_exists_wf, 
not_wf, 
l_disjoint_wf, 
all_wf, 
int_seg_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
member-less_than, 
nil_wf, 
length_of_nil_lemma, 
l_contains_nil, 
l_all_nil, 
l_all_wf_nil, 
cons_wf, 
length_of_cons_lemma, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
decidable_wf, 
equal_wf, 
l_all_cons, 
decidable__l_exists, 
decidable__not, 
decidable__l_disjoint, 
l_contains_transitivity, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
l_contains_append2, 
l_contains_cons, 
cons_member, 
add_nat_plus, 
length_wf_nat, 
nat_plus_wf, 
nat_plus_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
lelt_wf, 
list-cases, 
product_subtype_list, 
add-member-int_seg2, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
non_neg_length, 
select-cons-tl, 
add-subtract-cancel, 
pairwise-cons
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
setElimination, 
rename, 
natural_numberEquality, 
because_Cache, 
setEquality, 
productEquality, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
independent_functionElimination, 
applyEquality, 
addEquality, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
universeEquality, 
inlFormation, 
dependent_set_memberEquality, 
imageMemberEquality, 
applyLambdaEquality, 
hypothesis_subsumption, 
instantiate
Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}L:T  List  List
                \mexists{}reps:T  List  List
                  (reps  \msubseteq{}  L
                  \mwedge{}  (\mforall{}as\mmember{}L.(\mexists{}rep\mmember{}reps.  \mneg{}l\_disjoint(T;as;rep)))
                  \mwedge{}  (\mforall{}rep1,rep2\mmember{}reps.    l\_disjoint(T;rep1;rep2))) 
                supposing  (\mforall{}as\mmember{}L.0  <  ||as||)))
Date html generated:
2017_04_17-AM-08_13_51
Last ObjectModification:
2017_02_27-PM-04_40_08
Theory : list_1
Home
Index