Step
*
2
1
of Lemma
l_sum-sum
1. T : Type
2. u : T
3. v : T List
4. ∀[f:{x:T| (x ∈ v)} ⟶ ℤ]. (l_sum(map(f;v)) = Σ(f v[i] | i < ||v||) ∈ ℤ)
5. f : {x:T| (x ∈ [u / v])} ⟶ ℤ
6. l_sum(map(f;v)) = Σ(f v[i] | i < ||v||) ∈ ℤ
⊢ l_sum([f u / map(f;v)]) = Σ(f [u / v][i] | i < ||v|| + 1) ∈ ℤ
BY
{ (Unfold `l_sum` 0 THEN Reduce 0 THEN Fold `l_sum` 0 THEN HypSubst' (-1) 0) }
1
1. T : Type
2. u : T
3. v : T List
4. ∀[f:{x:T| (x ∈ v)} ⟶ ℤ]. (l_sum(map(f;v)) = Σ(f v[i] | i < ||v||) ∈ ℤ)
5. f : {x:T| (x ∈ [u / v])} ⟶ ℤ
6. l_sum(map(f;v)) = Σ(f v[i] | i < ||v||) ∈ ℤ
⊢ ((f u) + Σ(f v[i] | i < ||v||)) = Σ(f [u / v][i] | i < ||v|| + 1) ∈ ℤ
Latex:
Latex:
1. T : Type
2. u : T
3. v : T List
4. \mforall{}[f:\{x:T| (x \mmember{} v)\} {}\mrightarrow{} \mBbbZ{}]. (l\_sum(map(f;v)) = \mSigma{}(f v[i] | i < ||v||))
5. f : \{x:T| (x \mmember{} [u / v])\} {}\mrightarrow{} \mBbbZ{}
6. l\_sum(map(f;v)) = \mSigma{}(f v[i] | i < ||v||)
\mvdash{} l\_sum([f u / map(f;v)]) = \mSigma{}(f [u / v][i] | i < ||v|| + 1)
By
Latex:
(Unfold `l\_sum` 0 THEN Reduce 0 THEN Fold `l\_sum` 0 THEN HypSubst' (-1) 0)
Home
Index