Nuprl Lemma : l_sum-sum

[T:Type]. ∀[L:T List]. ∀[f:{x:T| (x ∈ L)}  ⟶ ℤ].  (l_sum(map(f;L)) = Σ(f L[i] i < ||L||) ∈ ℤ)


Proof




Definitions occuring in Statement :  l_sum: l_sum(L) sum: Σ(f[x] x < k) l_member: (x ∈ l) select: L[n] length: ||as|| map: map(f;as) list: List uall: [x:A]. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} or: P ∨ Q select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x]) cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T decidable: Dec(P) subtype_rel: A ⊆B l_sum: l_sum(L) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) int_seg: {i..j-} lelt: i ≤ j < k true: True
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf intformeq_wf int_formula_prop_eq_lemma list-cases map_nil_lemma length_of_nil_lemma stuck-spread istype-base product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf istype-universe l_member_wf subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le map_cons_lemma length_of_cons_lemma nat_wf list_wf nil_wf reduce_nil_lemma subtype_rel_dep_function cons_wf subtype_rel_sets cons_member reduce_cons_lemma sum_split length_wf add_nat_wf length_wf_nat add-is-int-iff false_wf select_wf int_seg_properties non_neg_length decidable__lt select_member int_seg_wf satisfiable-full-omega-tt list-subtype sum-as-primrec primrec1_lemma sum_wf squash_wf true_wf select-cons-tl add-subtract-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry applyLambdaEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  unionElimination baseClosed promote_hyp hypothesis_subsumption productElimination Error :equalityIsType1,  because_Cache Error :dependent_set_memberEquality_alt,  Error :functionIsType,  Error :setIsType,  instantiate imageElimination Error :equalityIsType4,  baseApply closedConclusion applyEquality intEquality universeEquality cumulativity setEquality functionEquality isect_memberFormation voidEquality isect_memberEquality Error :inrFormation_alt,  addEquality pointwiseFunctionality Error :productIsType,  computeAll dependent_pairFormation functionExtensionality lambdaEquality lambdaFormation dependent_set_memberEquality inlFormation imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].    (l\_sum(map(f;L))  =  \mSigma{}(f  L[i]  |  i  <  ||L||))



Date html generated: 2019_06_20-PM-01_43_48
Last ObjectModification: 2018_10_06-PM-11_56_02

Theory : list_1


Home Index