Step
*
1
of Lemma
lsum-split
1. T : Type
2. L : T List
3. P : {x:T| (x ∈ L)}  ⟶ 𝔹
4. f : {x:T| (x ∈ L)}  ⟶ ℤ
5. l_sum(map(f;L)) = (l_sum(map(f;filter(P;L))) + l_sum(map(f;filter(λx.(¬b(P x));L)))) ∈ ℤ
⊢ Σ(f[x] | x ∈ L) = (Σ(f[x] | x ∈ filter(λx.P[x];L)) + Σ(f[x] | x ∈ filter(λx.(¬bP[x]);L))) ∈ ℤ
BY
{ (RepUR ``lsum`` 0 THEN NthHypSq (-1) THEN EqCD THEN Try (Trivial)) }
1
1. T : Type
2. L : T List
3. P : {x:T| (x ∈ L)}  ⟶ 𝔹
4. f : {x:T| (x ∈ L)}  ⟶ ℤ
5. l_sum(map(f;L)) = (l_sum(map(f;filter(P;L))) + l_sum(map(f;filter(λx.(¬b(P x));L)))) ∈ ℤ
⊢ l_sum(map(λx.f[x];L)) ~ l_sum(map(f;L))
2
1. T : Type
2. L : T List
3. P : {x:T| (x ∈ L)}  ⟶ 𝔹
4. f : {x:T| (x ∈ L)}  ⟶ ℤ
5. l_sum(map(f;L)) = (l_sum(map(f;filter(P;L))) + l_sum(map(f;filter(λx.(¬b(P x));L)))) ∈ ℤ
⊢ l_sum(map(λx.f[x];filter(λx.P[x];L))) + l_sum(map(λx.f[x];filter(λx.(¬bP[x]);L))) ~ l_sum(map(f;filter(P;L)))
+ l_sum(map(f;filter(λx.(¬b(P x));L)))
Latex:
Latex:
1.  T  :  Type
2.  L  :  T  List
3.  P  :  \{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}
4.  f  :  \{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}
5.  l\_sum(map(f;L))  =  (l\_sum(map(f;filter(P;L)))  +  l\_sum(map(f;filter(\mlambda{}x.(\mneg{}\msubb{}(P  x));L))))
\mvdash{}  \mSigma{}(f[x]  |  x  \mmember{}  L)  =  (\mSigma{}(f[x]  |  x  \mmember{}  filter(\mlambda{}x.P[x];L))  +  \mSigma{}(f[x]  |  x  \mmember{}  filter(\mlambda{}x.(\mneg{}\msubb{}P[x]);L)))
By
Latex:
(RepUR  ``lsum``  0  THEN  NthHypSq  (-1)  THEN  EqCD  THEN  Try  (Trivial))
Home
Index