Nuprl Lemma : lsum-split
∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹]. ∀[f:{x:T| (x ∈ L)}  ⟶ ℤ].
  (Σ(f[x] | x ∈ L) = (Σ(f[x] | x ∈ filter(λx.P[x];L)) + Σ(f[x] | x ∈ filter(λx.(¬bP[x]);L))) ∈ ℤ)
Proof
Definitions occuring in Statement : 
lsum: Σ(f[x] | x ∈ L)
, 
l_member: (x ∈ l)
, 
filter: filter(P;l)
, 
list: T List
, 
bnot: ¬bb
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
lsum: Σ(f[x] | x ∈ L)
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
sq_type: SQType(T)
, 
true: True
, 
squash: ↓T
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
Lemmas referenced : 
l_sum-split, 
istype-int, 
l_member_wf, 
bool_wf, 
list_wf, 
istype-universe, 
l_sum_wf, 
int_subtype_base, 
subtype_base_sq, 
true_wf, 
squash_wf, 
map_wf, 
list-subtype, 
filter_wf2, 
bnot_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
functionIsType, 
because_Cache, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
setIsType, 
universeIsType, 
instantiate, 
universeEquality, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
lambdaEquality_alt, 
applyEquality, 
independent_isectElimination, 
intEquality, 
cumulativity, 
functionExtensionality, 
setEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].
    (\mSigma{}(f[x]  |  x  \mmember{}  L)  =  (\mSigma{}(f[x]  |  x  \mmember{}  filter(\mlambda{}x.P[x];L))  +  \mSigma{}(f[x]  |  x  \mmember{}  filter(\mlambda{}x.(\mneg{}\msubb{}P[x]);L))))
Date html generated:
2020_05_19-PM-09_48_31
Last ObjectModification:
2019_12_31-PM-01_20_57
Theory : list_1
Home
Index