Nuprl Lemma : lsum-split

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹]. ∀[f:{x:T| (x ∈ L)}  ⟶ ℤ].
  (f[x] x ∈ L) (f[x] x ∈ filter(λx.P[x];L)) + Σ(f[x] x ∈ filter(λx.(¬bP[x]);L))) ∈ ℤ)


Proof




Definitions occuring in Statement :  lsum: Σ(f[x] x ∈ L) l_member: (x ∈ l) filter: filter(P;l) list: List bnot: ¬bb bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] add: m int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: lsum: Σ(f[x] x ∈ L) guard: {T} implies:  Q all: x:A. B[x] sq_type: SQType(T) true: True squash: T uimplies: supposing a so_apply: x[s] ifthenelse: if then else fi  bnot: ¬bb
Lemmas referenced :  l_sum-split istype-int l_member_wf bool_wf list_wf istype-universe l_sum_wf int_subtype_base subtype_base_sq true_wf squash_wf map_wf list-subtype filter_wf2 bnot_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality functionIsType because_Cache sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType setIsType universeIsType instantiate universeEquality independent_functionElimination equalitySymmetry equalityTransitivity dependent_functionElimination baseClosed imageMemberEquality natural_numberEquality imageElimination lambdaEquality_alt applyEquality independent_isectElimination intEquality cumulativity functionExtensionality setEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].
    (\mSigma{}(f[x]  |  x  \mmember{}  L)  =  (\mSigma{}(f[x]  |  x  \mmember{}  filter(\mlambda{}x.P[x];L))  +  \mSigma{}(f[x]  |  x  \mmember{}  filter(\mlambda{}x.(\mneg{}\msubb{}P[x]);L))))



Date html generated: 2020_05_19-PM-09_48_31
Last ObjectModification: 2019_12_31-PM-01_20_57

Theory : list_1


Home Index