Nuprl Lemma : mapfilter-mapfilter
∀[f1,as,P2,f2,P1:Top].  (mapfilter(f1;P1;mapfilter(f2;P2;as)) ~ mapfilter(f1 o f2;λa.((P2 a) ∧b (P1 (f2 a)));as))
Proof
Definitions occuring in Statement : 
mapfilter: mapfilter(f;P;L)
, 
compose: f o g
, 
band: p ∧b q
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
mapfilter: mapfilter(f;P;L)
, 
member: t ∈ T
, 
top: Top
, 
compose: f o g
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf, 
filter-map, 
filter-filter, 
map-map
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
cut, 
lemma_by_obid, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
sqequalHypSubstitution, 
isectElimination, 
thin
Latex:
\mforall{}[f1,as,P2,f2,P1:Top].
    (mapfilter(f1;P1;mapfilter(f2;P2;as))  \msim{}  mapfilter(f1  o  f2;\mlambda{}a.((P2  a)  \mwedge{}\msubb{}  (P1  (f2  a)));as))
Date html generated:
2016_05_14-PM-01_29_07
Last ObjectModification:
2015_12_26-PM-05_22_02
Theory : list_1
Home
Index