Nuprl Lemma : mapfilter-singleton

[x,P,f:Top].  (mapfilter(f;P;[x]) map(f;if then [x] else [] fi ))


Proof




Definitions occuring in Statement :  mapfilter: mapfilter(f;P;L) map: map(f;as) cons: [a b] nil: [] ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top apply: a sqequal: t
Definitions unfolded in proof :  mapfilter: mapfilter(f;P;L) all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x]
Lemmas referenced :  filter_cons_lemma filter_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[x,P,f:Top].    (mapfilter(f;P;[x])  \msim{}  map(f;if  P  x  then  [x]  else  []  fi  ))



Date html generated: 2016_05_14-PM-01_28_40
Last ObjectModification: 2015_12_26-PM-05_21_40

Theory : list_1


Home Index