Nuprl Lemma : mklist-single

[f:Top]. (mklist(1;f) [f 0])


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) cons: [a b] nil: [] uall: [x:A]. B[x] top: Top apply: a natural_number: $n sqequal: t
Definitions unfolded in proof :  mklist: mklist(n;f) all: x:A. B[x] member: t ∈ T top: Top append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] uall: [x:A]. B[x]
Lemmas referenced :  primrec1_lemma list_ind_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[f:Top].  (mklist(1;f)  \msim{}  [f  0])



Date html generated: 2016_05_14-PM-01_45_22
Last ObjectModification: 2015_12_26-PM-05_33_04

Theory : list_1


Home Index