Nuprl Lemma : mklist-single
∀[f:Top]. (mklist(1;f) ~ [f 0])
Proof
Definitions occuring in Statement : 
mklist: mklist(n;f)
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
mklist: mklist(n;f)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
primrec1_lemma, 
list_ind_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[f:Top].  (mklist(1;f)  \msim{}  [f  0])
Date html generated:
2016_05_14-PM-01_45_22
Last ObjectModification:
2015_12_26-PM-05_33_04
Theory : list_1
Home
Index