Step
*
2
2
of Lemma
mono-list
1. A : Type
2. mono(A)
3. u : A
4. v : A List
5. ∀b:Base. (is-above(A List;v;b)
⇒ (v = b ∈ (A List)))
6. b : Base
7. is-above(A List;[u / v];b)
8. is-above(A × (A List);[u / v];b)
⊢ [u / v] = b ∈ (A List)
BY
{ (All (RepUR ``cons``) THEN (FLemma `is-above-pair` [-1] THENA Auto) THEN ExRepD) }
1
1. A : Type
2. mono(A)
3. u : A
4. v : A List
5. ∀b:Base. (is-above(A List;v;b)
⇒ (v = b ∈ (A List)))
6. b : Base
7. is-above(A List;<u, v>;b)
8. is-above(A × (A List);<u, v>;b)
9. c : Base
10. d : Base
11. b ~ <c, d>
12. is-above(A;u;c)
13. is-above(A List;v;d)
⊢ <u, v> = b ∈ (A List)
Latex:
Latex:
1. A : Type
2. mono(A)
3. u : A
4. v : A List
5. \mforall{}b:Base. (is-above(A List;v;b) {}\mRightarrow{} (v = b))
6. b : Base
7. is-above(A List;[u / v];b)
8. is-above(A \mtimes{} (A List);[u / v];b)
\mvdash{} [u / v] = b
By
Latex:
(All (RepUR ``cons``) THEN (FLemma `is-above-pair` [-1] THENA Auto) THEN ExRepD)
Home
Index