Nuprl Lemma : mono-list

A:Type. (mono(A)  mono(A List))


Proof




Definitions occuring in Statement :  list: List mono: mono(T) all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q mono: mono(T) uall: [x:A]. B[x] member: t ∈ T nat: false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q cons: [a b] decidable: Dec(P) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B true: True
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases is-above_wf list_wf nil_wf istype-base product_subtype_list colength-cons-not-zero colength_wf_list decidable__le intformnot_wf int_formula_prop_not_lemma istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma le_wf cons_wf istype-nat mono_wf istype-universe is-above-singleton-subtype unit_wf2 it_wf null_nil_lemma btrue_wf null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse is-above-axiom is-above-pair squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  unionElimination promote_hyp hypothesis_subsumption productElimination Error :equalityIstype,  because_Cache Error :dependent_set_memberEquality_alt,  instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase universeEquality Error :setIsType,  Error :productIsType,  productEquality independent_pairEquality imageMemberEquality

Latex:
\mforall{}A:Type.  (mono(A)  {}\mRightarrow{}  mono(A  List))



Date html generated: 2019_06_20-PM-01_20_17
Last ObjectModification: 2019_01_20-PM-02_49_10

Theory : list_1


Home Index