Nuprl Lemma : is-above-singleton-subtype

[A:Type]. ∀[a:A]. ∀[B:Type].  ∀[z:Base]. (is-above(A;a;z)  is-above(B;a;z)) supposing {x:A| a ∈ A}  ⊆B


Proof




Definitions occuring in Statement :  is-above: is-above(T;a;z) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q set: {x:A| B[x]}  base: Base universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B implies:  Q prop: is-above: is-above(T;a;z) exists: x:A. B[x] and: P ∧ Q cand: c∧ B squash: T
Lemmas referenced :  is-above-subtype equal_wf is-above_wf istype-base subtype_rel_wf istype-universe istype-sqle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction sqequalRule axiomEquality hypothesis thin rename Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination setEquality hypothesisEquality independent_isectElimination Error :dependent_set_memberEquality_alt,  Error :equalityIstype,  Error :inhabitedIsType,  independent_functionElimination Error :universeIsType,  instantiate universeEquality productElimination Error :dependent_pairFormation_alt,  because_Cache independent_pairFormation Error :productIsType,  Error :setIsType,  sqequalBase equalitySymmetry applyLambdaEquality setElimination imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[A:Type].  \mforall{}[a:A].  \mforall{}[B:Type].
    \mforall{}[z:Base].  (is-above(A;a;z)  {}\mRightarrow{}  is-above(B;a;z))  supposing  \{x:A|  x  =  a\}    \msubseteq{}r  B



Date html generated: 2019_06_20-PM-00_28_13
Last ObjectModification: 2019_01_20-PM-02_37_17

Theory : subtype_1


Home Index