Nuprl Lemma : nil-sub-co-list

[T:Type]. ∀[s:colist(T)].  sub-co-list(T;[];s)


Proof




Definitions occuring in Statement :  sub-co-list: sub-co-list(T;s1;s2) nil: [] colist: colist(T) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B list: List sub-co-list: sub-co-list(T;s1;s2) exists: x:A. B[x] all: x:A. B[x] top: Top
Lemmas referenced :  nil_wf nat_wf list-at_wf colist_wf istype-universe list_at_nil2_lemma istype-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality Error :lambdaEquality_alt,  setElimination rename hypothesisEquality Error :inhabitedIsType,  because_Cache sqequalRule Error :dependent_pairFormation_alt,  equalityTransitivity equalitySymmetry Error :equalityIstype,  baseClosed sqequalBase Error :universeIsType,  instantiate universeEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination

Latex:
\mforall{}[T:Type].  \mforall{}[s:colist(T)].    sub-co-list(T;[];s)



Date html generated: 2019_06_20-PM-01_22_02
Last ObjectModification: 2019_01_02-PM-04_40_26

Theory : list_1


Home Index