Step
*
1
1
of Lemma
orbit-cover
.....assertion.....
1. [T] : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. n : ℕ
4. f1 : ℕn ⟶ T
5. Surj(ℕn;T;f1)
6. f : T ⟶ T
7. orbit : a:T ⟶ (T List)
8. ∀a:T
(no_repeats(T;orbit a)
∧ (∀i:ℕ||orbit a||. (orbit a[i] = (f^i a) ∈ T))
∧ (∀b:T. ((b ∈ orbit a)
⇐⇒ ∃n:ℕ. (b = (f^n a) ∈ T))))
⊢ ∃orbits:T List List
((∀orbit∈orbits.0 < ||orbit||
∧ no_repeats(T;orbit)
∧ (∀i:ℕ||orbit||. (orbit[i] = (f^i orbit[0]) ∈ T))
∧ (∀b:T. ((b ∈ orbit)
⇐⇒ ∃n:ℕ. (b = (f^n orbit[0]) ∈ T))))
∧ (∀a:T. (∃orbit∈orbits. (a ∈ orbit))))
BY
{ (InstConcl [⌜map(orbit o f1;upto(n))⌝]⋅ THEN Auto) }
1
1. [T] : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. n : ℕ
4. f1 : ℕn ⟶ T
5. Surj(ℕn;T;f1)
6. f : T ⟶ T
7. orbit : a:T ⟶ (T List)
8. ∀a:T
(no_repeats(T;orbit a)
∧ (∀i:ℕ||orbit a||. (orbit a[i] = (f^i a) ∈ T))
∧ (∀b:T. ((b ∈ orbit a)
⇐⇒ ∃n:ℕ. (b = (f^n a) ∈ T))))
⊢ (∀orbit∈map(orbit o f1;upto(n)).0 < ||orbit||
∧ no_repeats(T;orbit)
∧ (∀i:ℕ||orbit||. (orbit[i] = (f^i orbit[0]) ∈ T))
∧ (∀b:T. ((b ∈ orbit)
⇐⇒ ∃n:ℕ. (b = (f^n orbit[0]) ∈ T))))
2
1. [T] : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. n : ℕ
4. f1 : ℕn ⟶ T
5. Surj(ℕn;T;f1)
6. f : T ⟶ T
7. orbit : a:T ⟶ (T List)
8. ∀a:T
(no_repeats(T;orbit a)
∧ (∀i:ℕ||orbit a||. (orbit a[i] = (f^i a) ∈ T))
∧ (∀b:T. ((b ∈ orbit a)
⇐⇒ ∃n:ℕ. (b = (f^n a) ∈ T))))
9. (∀orbit∈map(orbit o f1;upto(n)).0 < ||orbit||
∧ no_repeats(T;orbit)
∧ (∀i:ℕ||orbit||. (orbit[i] = (f^i orbit[0]) ∈ T))
∧ (∀b:T. ((b ∈ orbit)
⇐⇒ ∃n:ℕ. (b = (f^n orbit[0]) ∈ T))))
10. a : T
⊢ (∃orbit∈map(orbit o f1;upto(n)). (a ∈ orbit))
Latex:
Latex:
.....assertion.....
1. [T] : Type
2. \mforall{}x,y:T. Dec(x = y)
3. n : \mBbbN{}
4. f1 : \mBbbN{}n {}\mrightarrow{} T
5. Surj(\mBbbN{}n;T;f1)
6. f : T {}\mrightarrow{} T
7. orbit : a:T {}\mrightarrow{} (T List)
8. \mforall{}a:T
(no\_repeats(T;orbit a)
\mwedge{} (\mforall{}i:\mBbbN{}||orbit a||. (orbit a[i] = (f\^{}i a)))
\mwedge{} (\mforall{}b:T. ((b \mmember{} orbit a) \mLeftarrow{}{}\mRightarrow{} \mexists{}n:\mBbbN{}. (b = (f\^{}n a)))))
\mvdash{} \mexists{}orbits:T List List
((\mforall{}orbit\mmember{}orbits.0 < ||orbit||
\mwedge{} no\_repeats(T;orbit)
\mwedge{} (\mforall{}i:\mBbbN{}||orbit||. (orbit[i] = (f\^{}i orbit[0])))
\mwedge{} (\mforall{}b:T. ((b \mmember{} orbit) \mLeftarrow{}{}\mRightarrow{} \mexists{}n:\mBbbN{}. (b = (f\^{}n orbit[0])))))
\mwedge{} (\mforall{}a:T. (\mexists{}orbit\mmember{}orbits. (a \mmember{} orbit))))
By
Latex:
(InstConcl [\mkleeneopen{}map(orbit o f1;upto(n))\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index