Nuprl Lemma : reverse_singleton
∀[x:Top]. (rev([x]) ~ [x])
Proof
Definitions occuring in Statement : 
reverse: rev(as)
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
reverse: rev(as)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rev_app_cons_lemma, 
rev_app_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[x:Top].  (rev([x])  \msim{}  [x])
Date html generated:
2016_05_14-AM-07_38_17
Last ObjectModification:
2015_12_26-PM-02_12_24
Theory : list_1
Home
Index