Nuprl Lemma : reverse_singleton

[x:Top]. (rev([x]) [x])


Proof




Definitions occuring in Statement :  reverse: rev(as) cons: [a b] nil: [] uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  reverse: rev(as) all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x]
Lemmas referenced :  rev_app_cons_lemma rev_app_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[x:Top].  (rev([x])  \msim{}  [x])



Date html generated: 2016_05_14-AM-07_38_17
Last ObjectModification: 2015_12_26-PM-02_12_24

Theory : list_1


Home Index