Step
*
2
4
1
of Lemma
sorted-by-exists
1. [T] : Type
2. eq : T ⟶ T ⟶ 𝔹
3. r : T ⟶ T ⟶ 𝔹
4. ∀a,b:T. (↑(eq a b)
⇐⇒ a = b ∈ T)
5. Linorder(T;a,b.↑(r a b))
6. u : T
7. v : T List
8. L' : T List
9. sorted-by(λx,y. (↑(r x y));L')
10. no_repeats(T;L')
11. v ⊆ L'
12. L' ⊆ v
13. sorted-by(λx,y. (↑(r x y));insert-by(eq;r;u;L'))
14. no_repeats(T;insert-by(eq;r;u;L'))
15. [u / v] ⊆ insert-by(eq;r;u;L')
16. a : T
17. (a ∈ insert-by(eq;r;u;L'))
⊢ (a ∈ [u / v])
BY
{ (RWO "member-insert-by" (-1)⋅ THENA Auto) }
1
1. [T] : Type
2. eq : T ⟶ T ⟶ 𝔹
3. r : T ⟶ T ⟶ 𝔹
4. ∀a,b:T. (↑(eq a b)
⇐⇒ a = b ∈ T)
5. Linorder(T;a,b.↑(r a b))
6. u : T
7. v : T List
8. L' : T List
9. sorted-by(λx,y. (↑(r x y));L')
10. no_repeats(T;L')
11. v ⊆ L'
12. L' ⊆ v
13. sorted-by(λx,y. (↑(r x y));insert-by(eq;r;u;L'))
14. no_repeats(T;insert-by(eq;r;u;L'))
15. [u / v] ⊆ insert-by(eq;r;u;L')
16. a : T
17. (a = u ∈ T) ∨ (a ∈ L')
⊢ (a ∈ [u / v])
Latex:
Latex:
1. [T] : Type
2. eq : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbB{}
3. r : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbB{}
4. \mforall{}a,b:T. (\muparrow{}(eq a b) \mLeftarrow{}{}\mRightarrow{} a = b)
5. Linorder(T;a,b.\muparrow{}(r a b))
6. u : T
7. v : T List
8. L' : T List
9. sorted-by(\mlambda{}x,y. (\muparrow{}(r x y));L')
10. no\_repeats(T;L')
11. v \msubseteq{} L'
12. L' \msubseteq{} v
13. sorted-by(\mlambda{}x,y. (\muparrow{}(r x y));insert-by(eq;r;u;L'))
14. no\_repeats(T;insert-by(eq;r;u;L'))
15. [u / v] \msubseteq{} insert-by(eq;r;u;L')
16. a : T
17. (a \mmember{} insert-by(eq;r;u;L'))
\mvdash{} (a \mmember{} [u / v])
By
Latex:
(RWO "member-insert-by" (-1)\mcdot{} THENA Auto)
Home
Index