Step
*
2
2
1
of Lemma
upto_decomp1
1. n : ℕ+
2. upto(n) ~ upto(n - 1) @ map(λx.(x + (n - 1));upto(n - n - 1))
⊢ [n - 1] ~ [0 + (n - 1), 1 + (n - 1))
BY
{ ((RecUnfold `from-upto` 0 THEN AutoSplit) THEN EqCD) }
1
1. n : ℕ+
2. upto(n) ~ upto(n - 1) @ map(λx.(x + (n - 1));upto(n - n - 1))
3. 0 + (n - 1) < 1 + (n - 1)
⊢ n - 1 ~ 0 + (n - 1)
2
1. n : ℕ+
2. upto(n) ~ upto(n - 1) @ map(λx.(x + (n - 1));upto(n - n - 1))
3. 0 + (n - 1) < 1 + (n - 1)
⊢ [] ~ eval n' = (0 + (n - 1)) + 1 in
[n', 1 + (n - 1))
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. upto(n) \msim{} upto(n - 1) @ map(\mlambda{}x.(x + (n - 1));upto(n - n - 1))
\mvdash{} [n - 1] \msim{} [0 + (n - 1), 1 + (n - 1))
By
Latex:
((RecUnfold `from-upto` 0 THEN AutoSplit) THEN EqCD)
Home
Index