Nuprl Lemma : comb_for_fib_wf

λn,z. fib(n) ∈ n:ℕ ⟶ (↓True) ⟶ ℕ


Proof




Definitions occuring in Statement :  fib: fib(n) nat: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  fib_wf squash_wf true_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType

Latex:
\mlambda{}n,z.  fib(n)  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbN{}



Date html generated: 2019_06_20-PM-02_25_09
Last ObjectModification: 2018_10_03-AM-00_13_20

Theory : num_thy_1


Home Index