Nuprl Lemma : fib_wf

[n:ℕ]. (fib(n) ∈ ℕ)


Proof




Definitions occuring in Statement :  fib: fib(n) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) less_than: a < b fib: fib(n) bool: 𝔹 unit: Unit it: btrue: tt iff: ⇐⇒ Q uiff: uiff(P;Q) rev_implies:  Q ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma le_wf decidable__lt lelt_wf itermAdd_wf int_term_value_add_lemma nat_wf bor_wf eq_int_wf bool_wf equal-wf-T-base assert_wf or_wf band_wf bnot_wf not_wf iff_transitivity iff_weakening_uiff eqtt_to_assert assert_of_bor assert_of_eq_int bnot_thru_bor eqff_to_assert assert_of_band assert_of_bnot equal_wf add_nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache productElimination unionElimination applyEquality applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality addEquality baseClosed productEquality equalityElimination orFunctionality impliesFunctionality

Latex:
\mforall{}[n:\mBbbN{}].  (fib(n)  \mmember{}  \mBbbN{})



Date html generated: 2017_04_17-AM-09_43_55
Last ObjectModification: 2017_02_27-PM-05_38_38

Theory : num_thy_1


Home Index