Nuprl Lemma : coprime_intro

a,b:ℤ.  ((∀c:ℤ((c a)  (c b)  (c 1)))  CoPrime(a,b))


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) divides: a all: x:A. B[x] implies:  Q natural_number: $n int:
Definitions unfolded in proof :  coprime: CoPrime(a,b) gcd_p: GCD(a;b;y) all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] prop:
Lemmas referenced :  one_divs_any divides_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis independent_functionElimination productElimination Error :productIsType,  Error :universeIsType,  isectElimination Error :inhabitedIsType,  Error :functionIsType,  natural_numberEquality

Latex:
\mforall{}a,b:\mBbbZ{}.    ((\mforall{}c:\mBbbZ{}.  ((c  |  a)  {}\mRightarrow{}  (c  |  b)  {}\mRightarrow{}  (c  |  1)))  {}\mRightarrow{}  CoPrime(a,b))



Date html generated: 2019_06_20-PM-02_23_22
Last ObjectModification: 2018_10_03-AM-00_12_33

Theory : num_thy_1


Home Index