Nuprl Lemma : coprime_inversion

a,b:ℤ.  (CoPrime(a,b) ⇐⇒ CoPrime(b,a))


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) all: x:A. B[x] iff: ⇐⇒ Q int:
Definitions unfolded in proof :  coprime: CoPrime(a,b) all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q
Lemmas referenced :  gcd_p_sym gcd_p_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality natural_numberEquality independent_functionElimination hypothesis Error :universeIsType,  isectElimination Error :inhabitedIsType

Latex:
\mforall{}a,b:\mBbbZ{}.    (CoPrime(a,b)  \mLeftarrow{}{}\mRightarrow{}  CoPrime(b,a))



Date html generated: 2019_06_20-PM-02_22_37
Last ObjectModification: 2018_10_03-AM-00_12_28

Theory : num_thy_1


Home Index