Nuprl Lemma : coprime_inversion
∀a,b:ℤ.  (CoPrime(a,b) 
⇐⇒ CoPrime(b,a))
Proof
Definitions occuring in Statement : 
coprime: CoPrime(a,b)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
coprime: CoPrime(a,b)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
gcd_p_sym, 
gcd_p_wf, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
independent_functionElimination, 
hypothesis, 
Error :universeIsType, 
isectElimination, 
Error :inhabitedIsType
Latex:
\mforall{}a,b:\mBbbZ{}.    (CoPrime(a,b)  \mLeftarrow{}{}\mRightarrow{}  CoPrime(b,a))
Date html generated:
2019_06_20-PM-02_22_37
Last ObjectModification:
2018_10_03-AM-00_12_28
Theory : num_thy_1
Home
Index