Step
*
1
of Lemma
countable-nsub-family
.....assertion.....
1. B : ℕ ⟶ ℕ+
2. ∃f:ℕ ⟶ (ℕ × ℕ). Surj(ℕ;ℕ × ℕ;f)
⊢ ∃g:(ℕ × ℕ) ⟶ (i:ℕ × ℕB[i]). Surj(ℕ × ℕ;i:ℕ × ℕB[i];g)
BY
{ Assert ⌜∀i:ℕ. ∃g:ℕ ⟶ ℕB[i]. Surj(ℕ;ℕB[i];g)⌝⋅ }
1
.....assertion.....
1. B : ℕ ⟶ ℕ+
2. ∃f:ℕ ⟶ (ℕ × ℕ). Surj(ℕ;ℕ × ℕ;f)
⊢ ∀i:ℕ. ∃g:ℕ ⟶ ℕB[i]. Surj(ℕ;ℕB[i];g)
2
1. B : ℕ ⟶ ℕ+
2. ∃f:ℕ ⟶ (ℕ × ℕ). Surj(ℕ;ℕ × ℕ;f)
3. ∀i:ℕ. ∃g:ℕ ⟶ ℕB[i]. Surj(ℕ;ℕB[i];g)
⊢ ∃g:(ℕ × ℕ) ⟶ (i:ℕ × ℕB[i]). Surj(ℕ × ℕ;i:ℕ × ℕB[i];g)
Latex:
Latex:
.....assertion.....
1. B : \mBbbN{} {}\mrightarrow{} \mBbbN{}\msupplus{}
2. \mexists{}f:\mBbbN{} {}\mrightarrow{} (\mBbbN{} \mtimes{} \mBbbN{}). Surj(\mBbbN{};\mBbbN{} \mtimes{} \mBbbN{};f)
\mvdash{} \mexists{}g:(\mBbbN{} \mtimes{} \mBbbN{}) {}\mrightarrow{} (i:\mBbbN{} \mtimes{} \mBbbN{}B[i]). Surj(\mBbbN{} \mtimes{} \mBbbN{};i:\mBbbN{} \mtimes{} \mBbbN{}B[i];g)
By
Latex:
Assert \mkleeneopen{}\mforall{}i:\mBbbN{}. \mexists{}g:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[i]. Surj(\mBbbN{};\mBbbN{}B[i];g)\mkleeneclose{}\mcdot{}
Home
Index