Nuprl Lemma : div_nat_induction-ext

b:{b:ℤ1 < b} . ∀[P:ℕ ⟶ ℙ]. (P[0]  (∀i:ℕ+(P[i ÷ b]  P[i]))  (∀i:ℕP[i]))


Proof




Definitions occuring in Statement :  nat_plus: + nat: less_than: a < b uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] divide: n ÷ m natural_number: $n int:
Definitions unfolded in proof :  member: t ∈ T so_apply: x[s1;s2] div_nat_induction decidable__equal_int decidable__int_equal uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a
Lemmas referenced :  div_nat_induction lifting-strict-int_eq istype-void strict4-decide decidable__equal_int decidable__int_equal
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination

Latex:
\mforall{}b:\{b:\mBbbZ{}|  1  <  b\}  .  \mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (P[0]  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}\msupplus{}.  (P[i  \mdiv{}  b]  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}.  P[i]))



Date html generated: 2019_06_20-PM-02_33_18
Last ObjectModification: 2019_04_15-PM-10_31_58

Theory : num_thy_1


Home Index