Step
*
1
1
of Lemma
divides_iff_div_exact
1. a : ℤ
2. n : ℤ-o
3. n | a
4. (a rem n) = 0 ∈ ℤ
⊢ ((a ÷ n) * n) = a ∈ ℤ
BY
{ (Using [`n',⌜(a ÷ n) * n⌝] (FwdThruLemma `add_mono_wrt_eq` [4]) THENA Auto) }
1
1. a : ℤ
2. n : ℤ-o
3. n | a
4. (a rem n) = 0 ∈ ℤ
5. ((a rem n) + ((a ÷ n) * n)) = (0 + ((a ÷ n) * n)) ∈ ℤ
⊢ ((a ÷ n) * n) = a ∈ ℤ
Latex:
Latex:
1. a : \mBbbZ{}
2. n : \mBbbZ{}\msupminus{}\msupzero{}
3. n | a
4. (a rem n) = 0
\mvdash{} ((a \mdiv{} n) * n) = a
By
Latex:
(Using [`n',\mkleeneopen{}(a \mdiv{} n) * n\mkleeneclose{}] (FwdThruLemma `add\_mono\_wrt\_eq` [4]) THENA Auto)
Home
Index