Step
*
of Lemma
exp-rem_wf
∀[m:ℕ+]. ∀[i:ℤ]. ∀[n:ℕ]. (exp-rem(i;n;m) ∈ ℤ)
BY
{ ((D 0 THENA Auto)
THEN CompleteInductionOnNat
THEN skip{(RecUnfold `exp-rem` 0
THEN Reduce 0
THEN Auto
THEN (InstHyp [⌜n ÷ 2⌝] 4⋅ THENA (Auto THEN (MemTypeCD THEN Auto) THEN BLemma `div_mono1` THEN Auto))
THEN Auto)}) }
1
1. m : ℕ+
2. i : ℤ
3. n : ℕ
4. ∀n:ℕn. (exp-rem(i;n;m) ∈ ℤ)
⊢ exp-rem(i;n;m) ∈ ℤ
Latex:
Latex:
\mforall{}[m:\mBbbN{}\msupplus{}]. \mforall{}[i:\mBbbZ{}]. \mforall{}[n:\mBbbN{}]. (exp-rem(i;n;m) \mmember{} \mBbbZ{})
By
Latex:
((D 0 THENA Auto)
THEN CompleteInductionOnNat
THEN skip\{(RecUnfold `exp-rem` 0
THEN Reduce 0
THEN Auto
THEN (InstHyp [\mkleeneopen{}n \mdiv{} 2\mkleeneclose{}] 4\mcdot{}
THENA (Auto THEN (MemTypeCD THEN Auto) THEN BLemma `div\_mono1` THEN Auto)
)
THEN Auto)\})
Home
Index