Nuprl Lemma : exp-rem_wf

[m:ℕ+]. ∀[i:ℤ]. ∀[n:ℕ].  (exp-rem(i;n;m) ∈ ℤ)


Proof




Definitions occuring in Statement :  exp-rem: exp-rem(i;n;m) nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B nat_plus: + decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) exp-rem: exp-rem(i;n;m) nequal: a ≠ b ∈  int_upper: {i...} less_than: a < b squash: T less_than': less_than'(a;b) true: True int_nzero: -o bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b has-value: (a)↓
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties nat_plus_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self itermAdd_wf int_term_value_add_lemma istype-nat nat_plus_wf divide_wfa div_bounds_1 div_mono1 int_upper_properties value-type-has-value nequal_wf eq_int_wf eqtt_to_assert assert_of_eq_int remainder_wfa nat_plus_inc_int_nzero eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int upper_subtype_nat istype-false nequal-le-implies zero-add int-value-type upper_subtype_upper
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  productElimination unionElimination applyEquality instantiate because_Cache applyLambdaEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  hypothesis_subsumption addEquality Error :isectIsTypeImplies,  imageMemberEquality baseClosed cumulativity intEquality Error :equalityIstype,  sqequalBase closedConclusion equalityElimination int_eqReduceTrueSq promote_hyp int_eqReduceFalseSq callbyvalueReduce multiplyEquality

Latex:
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[i:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (exp-rem(i;n;m)  \mmember{}  \mBbbZ{})



Date html generated: 2019_06_20-PM-02_31_55
Last ObjectModification: 2019_03_06-AM-11_06_17

Theory : num_thy_1


Home Index