Step
*
2
1
of Lemma
fibs_wf
1. f : ⋂n:ℕ. (primrec(n;Top;λ,T. (ℕ × T)) ⟶ primrec(n;Top;λ,T. (ℕ × T)))
⊢ fix((λfibs.1.f fibs)) ∈ stream(ℕ)
BY
{ (RepUR ``stream corec`` 0
THEN Auto
THEN NatInd(-1)
THEN Reduce 0
THEN Auto
THEN (RWO "primrec-unroll" 0 THENA Auto)
THEN AutoSplit
THEN RW (SweepUpC UnrollRecursionC) 0
THEN Reduce 0
THEN ProveWfLemma
THEN With ⌜n - 1⌝ (D 1)⋅
THEN Auto) }
Latex:
Latex:
1. f : \mcap{}n:\mBbbN{}. (primrec(n;Top;\mlambda{},T. (\mBbbN{} \mtimes{} T)) {}\mrightarrow{} primrec(n;Top;\mlambda{},T. (\mBbbN{} \mtimes{} T)))
\mvdash{} fix((\mlambda{}fibs.1.f fibs)) \mmember{} stream(\mBbbN{})
By
Latex:
(RepUR ``stream corec`` 0
THEN Auto
THEN NatInd(-1)
THEN Reduce 0
THEN Auto
THEN (RWO "primrec-unroll" 0 THENA Auto)
THEN AutoSplit
THEN RW (SweepUpC UnrollRecursionC) 0
THEN Reduce 0
THEN ProveWfLemma
THEN With \mkleeneopen{}n - 1\mkleeneclose{} (D 1)\mcdot{}
THEN Auto)
Home
Index