Nuprl Lemma : gcd_p_one
∀a:ℤ. GCD(a;1;1)
Proof
Definitions occuring in Statement :
gcd_p: GCD(a;b;y)
,
all: ∀x:A. B[x]
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
gcd_p: GCD(a;b;y)
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
cand: A c∧ B
,
member: t ∈ T
,
implies: P
⇒ Q
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
Lemmas referenced :
one_divs_any,
divides_wf,
istype-int
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
Error :lambdaFormation_alt,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
hypothesis,
independent_pairFormation,
natural_numberEquality,
productElimination,
Error :productIsType,
Error :universeIsType,
isectElimination,
Error :inhabitedIsType
Latex:
\mforall{}a:\mBbbZ{}. GCD(a;1;1)
Date html generated:
2019_06_20-PM-02_21_30
Last ObjectModification:
2018_10_02-PM-11_35_07
Theory : num_thy_1
Home
Index