Step
*
2
3
1
1
of Lemma
lcm-property
1. x : ℤ
2. y : ℤ
3. a : ℤ
4. b : ℤ
5. CoPrime(a,b)
6. x = (gcd(x;y) * a) ∈ ℤ
7. y = (gcd(x;y) * b) ∈ ℤ
8. ¬(gcd(x;y) = 0 ∈ ℤ)
9. CoPrime(a,b)
10. (x * b) = lcm(x;y) ∈ ℤ
11. x = 0 ∈ ℤ
⊢ y = gcd(0;y) ∈ ℤ
BY
{ (RecUnfold `gcd` 0 THEN AutoSplit)⋅ }
1
1. x : ℤ
2. y : ℤ
3. y ≠ 0
4. a : ℤ
5. b : ℤ
6. CoPrime(a,b)
7. x = (gcd(x;y) * a) ∈ ℤ
8. y = (gcd(x;y) * b) ∈ ℤ
9. ¬(gcd(x;y) = 0 ∈ ℤ)
10. CoPrime(a,b)
11. (x * b) = lcm(x;y) ∈ ℤ
12. x = 0 ∈ ℤ
⊢ y = gcd(y;0 rem y) ∈ ℤ
Latex:
Latex:
1. x : \mBbbZ{}
2. y : \mBbbZ{}
3. a : \mBbbZ{}
4. b : \mBbbZ{}
5. CoPrime(a,b)
6. x = (gcd(x;y) * a)
7. y = (gcd(x;y) * b)
8. \mneg{}(gcd(x;y) = 0)
9. CoPrime(a,b)
10. (x * b) = lcm(x;y)
11. x = 0
\mvdash{} y = gcd(0;y)
By
Latex:
(RecUnfold `gcd` 0 THEN AutoSplit)\mcdot{}
Home
Index