Nuprl Lemma : lcm-property
∀x,y:ℤ.  ∃a,b:ℤ. (CoPrime(a,b) ∧ ((x * b) = lcm(x;y) ∈ ℤ) ∧ ((y * a) = lcm(x;y) ∈ ℤ))
Proof
Definitions occuring in Statement : 
lcm: lcm(a;b)
, 
coprime: CoPrime(a,b)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nequal: a ≠ b ∈ T 
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
uimplies: b supposing a
, 
lcm: lcm(a;b)
, 
has-value: (a)↓
, 
true: True
, 
squash: ↓T
, 
gcd: gcd(a;b)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_nzero: ℤ-o
, 
eq_int: (i =z j)
Lemmas referenced : 
gcd-property, 
decidable__equal_int, 
gcd_wf, 
coprime_wf, 
int_subtype_base, 
istype-int, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformnot_wf, 
full-omega-unsat, 
assert_of_eq_int, 
eqtt_to_assert, 
eq_int_wf, 
int-value-type, 
value-type-has-value, 
subtype_base_sq, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
int_formula_prop_and_lemma, 
intformand_wf, 
subtype_rel_self, 
iff_weakening_equal, 
mul-associates, 
mul-commutes, 
div-cancel-1, 
nequal_wf, 
zero-div-rem, 
btrue_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
dependent_pairFormation_alt, 
natural_numberEquality, 
unionElimination, 
sqequalRule, 
productIsType, 
universeIsType, 
isectElimination, 
equalityIstype, 
inhabitedIsType, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
sqequalBase, 
equalitySymmetry, 
because_Cache, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
lambdaEquality_alt, 
approximateComputation, 
independent_pairFormation, 
equalityElimination, 
multiplyEquality, 
promote_hyp, 
independent_functionElimination, 
equalityTransitivity, 
independent_isectElimination, 
intEquality, 
cumulativity, 
instantiate, 
callbyvalueReduce, 
Error :memTop, 
imageMemberEquality, 
universeEquality, 
imageElimination, 
hyp_replacement, 
dependent_set_memberEquality_alt
Latex:
\mforall{}x,y:\mBbbZ{}.    \mexists{}a,b:\mBbbZ{}.  (CoPrime(a,b)  \mwedge{}  ((x  *  b)  =  lcm(x;y))  \mwedge{}  ((y  *  a)  =  lcm(x;y)))
Date html generated:
2020_05_19-PM-10_02_19
Last ObjectModification:
2019_12_31-AM-10_56_45
Theory : num_thy_1
Home
Index