Nuprl Lemma : polymorphic-id-unique
∀f,g:⋂T:Type. (T ⟶ T).  (f = g ∈ (⋂T:Type. (T ⟶ T)))
Proof
Definitions occuring in Statement : 
all: ∀x:A. B[x]
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
implies: P 
⇒ Q
Lemmas referenced : 
istype-universe, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
universeEquality, 
hypothesis, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :isectIsType, 
Error :functionIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :functionExtensionality_alt, 
setEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
Error :dependent_set_memberEquality_alt, 
Error :equalityIsType1, 
setElimination, 
rename, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
productElimination
Latex:
\mforall{}f,g:\mcap{}T:Type.  (T  {}\mrightarrow{}  T).    (f  =  g)
Date html generated:
2019_06_20-PM-02_44_01
Last ObjectModification:
2018_10_06-AM-11_24_35
Theory : num_thy_1
Home
Index