Nuprl Lemma : polymorphic-id-unique

f,g:⋂T:Type. (T ⟶ T).  (f g ∈ (⋂T:Type. (T ⟶ T)))


Proof




Definitions occuring in Statement :  all: x:A. B[x] isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B prop: implies:  Q
Lemmas referenced :  istype-universe equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut Error :isect_memberEquality_alt,  Error :universeIsType,  universeEquality hypothesis Error :inhabitedIsType,  hypothesisEquality Error :isectIsType,  Error :functionIsType,  introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :functionExtensionality_alt,  setEquality because_Cache equalityTransitivity equalitySymmetry applyEquality Error :dependent_set_memberEquality_alt,  Error :equalityIsType1,  setElimination rename dependent_functionElimination independent_functionElimination independent_pairFormation productElimination

Latex:
\mforall{}f,g:\mcap{}T:Type.  (T  {}\mrightarrow{}  T).    (f  =  g)



Date html generated: 2019_06_20-PM-02_44_01
Last ObjectModification: 2018_10_06-AM-11_24_35

Theory : num_thy_1


Home Index