Step
*
2
1
2
1
2
of Lemma
prime-power-divides-product
1. p : ℕ
2. prime(p)
3. n : ℤ
4. 0 < n
5. ∀x,y:ℤ. ((¬(p | x))
⇒ (p^n | (x * y))
⇒ (p^n | y))
6. x : ℤ
7. ∀y:ℤ. ((¬(p | x))
⇒ (p^n | (x * y))
⇒ (p^n | y))
8. y : ℤ
9. ¬(p | x)
10. p^(n + 1) | (x * y)
11. c : ℤ
12. y = (p^n * c) ∈ ℤ
13. p | (x * c)
⊢ p^(n + 1) | (p^n * c)
BY
{ Assert ⌜p | c⌝⋅ }
1
.....assertion.....
1. p : ℕ
2. prime(p)
3. n : ℤ
4. 0 < n
5. ∀x,y:ℤ. ((¬(p | x))
⇒ (p^n | (x * y))
⇒ (p^n | y))
6. x : ℤ
7. ∀y:ℤ. ((¬(p | x))
⇒ (p^n | (x * y))
⇒ (p^n | y))
8. y : ℤ
9. ¬(p | x)
10. p^(n + 1) | (x * y)
11. c : ℤ
12. y = (p^n * c) ∈ ℤ
13. p | (x * c)
⊢ p | c
2
1. p : ℕ
2. prime(p)
3. n : ℤ
4. 0 < n
5. ∀x,y:ℤ. ((¬(p | x))
⇒ (p^n | (x * y))
⇒ (p^n | y))
6. x : ℤ
7. ∀y:ℤ. ((¬(p | x))
⇒ (p^n | (x * y))
⇒ (p^n | y))
8. y : ℤ
9. ¬(p | x)
10. p^(n + 1) | (x * y)
11. c : ℤ
12. y = (p^n * c) ∈ ℤ
13. p | (x * c)
14. p | c
⊢ p^(n + 1) | (p^n * c)
Latex:
Latex:
1. p : \mBbbN{}
2. prime(p)
3. n : \mBbbZ{}
4. 0 < n
5. \mforall{}x,y:\mBbbZ{}. ((\mneg{}(p | x)) {}\mRightarrow{} (p\^{}n | (x * y)) {}\mRightarrow{} (p\^{}n | y))
6. x : \mBbbZ{}
7. \mforall{}y:\mBbbZ{}. ((\mneg{}(p | x)) {}\mRightarrow{} (p\^{}n | (x * y)) {}\mRightarrow{} (p\^{}n | y))
8. y : \mBbbZ{}
9. \mneg{}(p | x)
10. p\^{}(n + 1) | (x * y)
11. c : \mBbbZ{}
12. y = (p\^{}n * c)
13. p | (x * c)
\mvdash{} p\^{}(n + 1) | (p\^{}n * c)
By
Latex:
Assert \mkleeneopen{}p | c\mkleeneclose{}\mcdot{}
Home
Index