Nuprl Lemma : prime-power-divides-product

p:ℕ(prime(p)  (∀n:ℕ+. ∀x,y:ℤ.  ((¬(p x))  (p^n (x y))  (p^n y))))


Proof




Definitions occuring in Statement :  prime: prime(a) divides: a exp: i^n nat_plus: + nat: all: x:A. B[x] not: ¬A implies:  Q multiply: m int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T nat_plus: + not: ¬A nat: prop: false: False ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] exp: i^n prime: prime(a) divides: a subtract: m subtype_rel: A ⊆B sq_type: SQType(T) guard: {T} int_nzero: -o nequal: a ≠ b ∈  squash: T true: True iff: ⇐⇒ Q uiff: uiff(P;Q)
Lemmas referenced :  nat_plus_properties divides_wf istype-void exp_wf2 nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le primrec-wf-nat-plus not_wf nat_plus_wf prime_wf istype-nat primrec1_lemma mul-one itermAdd_wf int_term_value_add_lemma mul-swap mul-commutes add-commutes exp_step decidable__lt istype-less_than add-associates add-swap zero-add int_subtype_base set_subtype_base le_wf subtype_base_sq mul_cancel_in_eq exp_wf3 nequal_wf equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal decidable__equal_int multiply-is-int-iff intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin rename introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination sqequalRule functionIsType inhabitedIsType because_Cache universeIsType dependent_set_memberEquality_alt dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination multiplyEquality functionEquality intEquality productElimination addEquality equalityIstype baseApply closedConclusion baseClosed applyEquality sqequalBase equalitySymmetry instantiate cumulativity equalityTransitivity hyp_replacement imageElimination universeEquality imageMemberEquality pointwiseFunctionality promote_hyp

Latex:
\mforall{}p:\mBbbN{}.  (prime(p)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x,y:\mBbbZ{}.    ((\mneg{}(p  |  x))  {}\mRightarrow{}  (p\^{}n  |  (x  *  y))  {}\mRightarrow{}  (p\^{}n  |  y))))



Date html generated: 2020_05_19-PM-10_02_05
Last ObjectModification: 2020_01_04-PM-08_10_12

Theory : num_thy_1


Home Index