Nuprl Lemma : prime-power-divides-product
∀p:ℕ. (prime(p) 
⇒ (∀n:ℕ+. ∀x,y:ℤ.  ((¬(p | x)) 
⇒ (p^n | (x * y)) 
⇒ (p^n | y))))
Proof
Definitions occuring in Statement : 
prime: prime(a)
, 
divides: b | a
, 
exp: i^n
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
not: ¬A
, 
nat: ℕ
, 
prop: ℙ
, 
false: False
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exp: i^n
, 
prime: prime(a)
, 
divides: b | a
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
Lemmas referenced : 
nat_plus_properties, 
divides_wf, 
istype-void, 
exp_wf2, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
primrec-wf-nat-plus, 
not_wf, 
nat_plus_wf, 
prime_wf, 
istype-nat, 
primrec1_lemma, 
mul-one, 
itermAdd_wf, 
int_term_value_add_lemma, 
mul-swap, 
mul-commutes, 
add-commutes, 
exp_step, 
decidable__lt, 
istype-less_than, 
add-associates, 
add-swap, 
zero-add, 
int_subtype_base, 
set_subtype_base, 
le_wf, 
subtype_base_sq, 
mul_cancel_in_eq, 
exp_wf3, 
nequal_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
decidable__equal_int, 
multiply-is-int-iff, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
rename, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
sqequalRule, 
functionIsType, 
inhabitedIsType, 
because_Cache, 
universeIsType, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
multiplyEquality, 
functionEquality, 
intEquality, 
productElimination, 
addEquality, 
equalityIstype, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
sqequalBase, 
equalitySymmetry, 
instantiate, 
cumulativity, 
equalityTransitivity, 
hyp_replacement, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
pointwiseFunctionality, 
promote_hyp
Latex:
\mforall{}p:\mBbbN{}.  (prime(p)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x,y:\mBbbZ{}.    ((\mneg{}(p  |  x))  {}\mRightarrow{}  (p\^{}n  |  (x  *  y))  {}\mRightarrow{}  (p\^{}n  |  y))))
Date html generated:
2020_05_19-PM-10_02_05
Last ObjectModification:
2020_01_04-PM-08_10_12
Theory : num_thy_1
Home
Index