Nuprl Lemma : unit_chars
∀a:ℤ. (a | 1 ⇐⇒ a ~ 1)
Proof
Definitions occuring in Statement : 
assoced: a ~ b, 
divides: b | a, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
assoced: a ~ b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
one_divs_any, 
divides_wf, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
hypothesis, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
Error :universeIsType, 
isectElimination, 
natural_numberEquality, 
productElimination, 
Error :productIsType, 
because_Cache
Latex:
\mforall{}a:\mBbbZ{}.  (a  |  1  \mLeftarrow{}{}\mRightarrow{}  a  \msim{}  1)
Date html generated:
2019_06_20-PM-02_21_13
Last ObjectModification:
2018_10_03-AM-10_23_41
Theory : num_thy_1
Home
Index