Nuprl Lemma : unit_chars

a:ℤ(a ⇐⇒ 1)


Proof




Definitions occuring in Statement :  assoced: b divides: a all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n int:
Definitions unfolded in proof :  assoced: b all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q
Lemmas referenced :  one_divs_any divides_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  independent_pairFormation hypothesis cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality Error :universeIsType,  isectElimination natural_numberEquality productElimination Error :productIsType,  because_Cache

Latex:
\mforall{}a:\mBbbZ{}.  (a  |  1  \mLeftarrow{}{}\mRightarrow{}  a  \msim{}  1)



Date html generated: 2019_06_20-PM-02_21_13
Last ObjectModification: 2018_10_03-AM-10_23_41

Theory : num_thy_1


Home Index