Nuprl Lemma : int_term_ind-add
∀[C,V,A,S,M,MN,a,b:Top].
(int-term-ind-fun(c.C[c];
v.V[v];
l,r,rl,rr.A[l;r;rl;rr];
l,r,rl,rr.S[l;r;rl;rr];
l,r,rl,rr.M[l;r;rl;rr];
x,rx.MN[x;rx])
(a (+) b) ~ A[a;b;int-term-ind-fun(c.C[c];
v.V[v];
l,r,rl,rr.A[l;r;rl;rr];
l,r,rl,rr.S[l;r;rl;rr];
l,r,rl,rr.M[l;r;rl;rr];
x,rx.MN[x;rx])
a;int-term-ind-fun(c.C[c];
v.V[v];
l,r,rl,rr.A[l;r;rl;rr];
l,r,rl,rr.S[l;r;rl;rr];
l,r,rl,rr.M[l;r;rl;rr];
x,rx.MN[x;rx])
b])
Proof
Definitions occuring in Statement :
int-term-ind-fun: int-term-ind-fun,
itermAdd: left (+) right
,
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s1;s2;s3;s4]
,
so_apply: x[s1;s2]
,
so_apply: x[s]
,
apply: f a
,
sqequal: s ~ t
Definitions unfolded in proof :
int-term-ind-fun: int-term-ind-fun,
itermAdd: left (+) right
,
int_term_ind: int_term_ind,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
sqequalAxiom,
extract_by_obid,
hypothesis,
sqequalHypSubstitution,
isect_memberEquality,
isectElimination,
thin,
hypothesisEquality,
because_Cache
Latex:
\mforall{}[C,V,A,S,M,MN,a,b:Top].
(int-term-ind-fun(c.C[c];
v.V[v];
l,r,rl,rr.A[l;r;rl;rr];
l,r,rl,rr.S[l;r;rl;rr];
l,r,rl,rr.M[l;r;rl;rr];
x,rx.MN[x;rx])
(a (+) b) \msim{} A[a;b;int-term-ind-fun(c.C[c];
v.V[v];
l,r,rl,rr.A[l;r;rl;rr];
l,r,rl,rr.S[l;r;rl;rr];
l,r,rl,rr.M[l;r;rl;rr];
x,rx.MN[x;rx])
a;int-term-ind-fun(c.C[c];
v.V[v];
l,r,rl,rr.A[l;r;rl;rr];
l,r,rl,rr.S[l;r;rl;rr];
l,r,rl,rr.M[l;r;rl;rr];
x,rx.MN[x;rx])
b])
Date html generated:
2017_09_29-PM-05_52_01
Last ObjectModification:
2017_05_12-PM-00_04_24
Theory : omega
Home
Index