Nuprl Lemma : int_term_to_ipoly-mul
∀[a,b:Top]. (int_term_to_ipoly(a (*) b) ~ mul_ipoly(int_term_to_ipoly(a);int_term_to_ipoly(b)))
Proof
Definitions occuring in Statement :
int_term_to_ipoly: int_term_to_ipoly(t)
,
mul_ipoly: mul_ipoly(p;q)
,
itermMultiply: left (*) right
,
uall: ∀[x:A]. B[x]
,
top: Top
,
sqequal: s ~ t
Definitions unfolded in proof :
int_term_to_ipoly: int_term_to_ipoly(t)
,
itermMultiply: left (*) right
,
int_term_ind: int_term_ind,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
sqequalAxiom,
extract_by_obid,
hypothesis,
sqequalHypSubstitution,
isect_memberEquality,
isectElimination,
thin,
hypothesisEquality,
because_Cache
Latex:
\mforall{}[a,b:Top]. (int\_term\_to\_ipoly(a (*) b) \msim{} mul\_ipoly(int\_term\_to\_ipoly(a);int\_term\_to\_ipoly(b)))
Date html generated:
2017_09_29-PM-05_55_35
Last ObjectModification:
2017_05_10-PM-04_17_29
Theory : omega
Home
Index