Nuprl Lemma : int_term_to_ipoly-mul
∀[a,b:Top].  (int_term_to_ipoly(a (*) b) ~ mul_ipoly(int_term_to_ipoly(a);int_term_to_ipoly(b)))
Proof
Definitions occuring in Statement : 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
mul_ipoly: mul_ipoly(p;q)
, 
itermMultiply: left (*) right
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
itermMultiply: left (*) right
, 
int_term_ind: int_term_ind, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[a,b:Top].    (int\_term\_to\_ipoly(a  (*)  b)  \msim{}  mul\_ipoly(int\_term\_to\_ipoly(a);int\_term\_to\_ipoly(b)))
Date html generated:
2017_09_29-PM-05_55_35
Last ObjectModification:
2017_05_10-PM-04_17_29
Theory : omega
Home
Index