Nuprl Lemma : int_term_to_ipoly-sub
∀[a,b:Top].  (int_term_to_ipoly(a (-) b) ~ add_ipoly(int_term_to_ipoly(a);minus-poly(int_term_to_ipoly(b))))
Proof
Definitions occuring in Statement : 
int_term_to_ipoly: int_term_to_ipoly(t), 
minus-poly: minus-poly(p), 
add_ipoly: add_ipoly(p;q), 
itermSubtract: left (-) right, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
int_term_to_ipoly: int_term_to_ipoly(t), 
itermSubtract: left (-) right, 
int_term_ind: int_term_ind, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[a,b:Top].
    (int\_term\_to\_ipoly(a  (-)  b)  \msim{}  add\_ipoly(int\_term\_to\_ipoly(a);minus-poly(int\_term\_to\_ipoly(b))))
 Date html generated: 
2017_09_29-PM-05_55_30
 Last ObjectModification: 
2017_05_10-PM-04_18_28
Theory : omega
Home
Index