Nuprl Lemma : int_term_to_ipoly-sub

[a,b:Top].  (int_term_to_ipoly(a (-) b) add_ipoly(int_term_to_ipoly(a);minus-poly(int_term_to_ipoly(b))))


Proof




Definitions occuring in Statement :  int_term_to_ipoly: int_term_to_ipoly(t) minus-poly: minus-poly(p) add_ipoly: add_ipoly(p;q) itermSubtract: left (-) right uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  int_term_to_ipoly: int_term_to_ipoly(t) itermSubtract: left (-) right int_term_ind: int_term_ind uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom extract_by_obid hypothesis sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[a,b:Top].
    (int\_term\_to\_ipoly(a  (-)  b)  \msim{}  add\_ipoly(int\_term\_to\_ipoly(a);minus-poly(int\_term\_to\_ipoly(b))))



Date html generated: 2017_09_29-PM-05_55_30
Last ObjectModification: 2017_05_10-PM-04_18_28

Theory : omega


Home Index