Nuprl Lemma : istype-int_formula_prop

[f:ℤ ⟶ ℤ]. ∀[fmla:int_formula()].  istype(int_formula_prop(f;fmla))


Proof




Definitions occuring in Statement :  int_formula_prop: int_formula_prop(f;fmla) int_formula: int_formula() istype: istype(T) uall: [x:A]. B[x] function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  int_formula_prop_wf int_formula_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :functionIsType,  Error :inhabitedIsType

Latex:
\mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[fmla:int\_formula()].    istype(int\_formula\_prop(f;fmla))



Date html generated: 2019_06_20-PM-00_46_39
Last ObjectModification: 2018_10_04-PM-00_52_33

Theory : omega


Home Index