Nuprl Lemma : istype-int_formula_prop
∀[f:ℤ ⟶ ℤ]. ∀[fmla:int_formula()].  istype(int_formula_prop(f;fmla))
Proof
Definitions occuring in Statement : 
int_formula_prop: int_formula_prop(f;fmla)
, 
int_formula: int_formula()
, 
istype: istype(T)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
int_formula_prop_wf, 
int_formula_wf, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :functionIsType, 
Error :inhabitedIsType
Latex:
\mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[fmla:int\_formula()].    istype(int\_formula\_prop(f;fmla))
Date html generated:
2019_06_20-PM-00_46_39
Last ObjectModification:
2018_10_04-PM-00_52_33
Theory : omega
Home
Index