Step
*
1
2
of Lemma
linearization-value
1. u : ℤ List
2. v : ℤ List List
3. ∀[p:iPolynomial()]
     ∀f:ℤ ⟶ ℤ
       (int_term_value(f;ipolynomial-term(filter(λm.snd(m) ∈b v;p)))
       = linearization(p;v) ⋅ map(λvs.accumulate (with value x and list item v):
                                       x * (f v)
                                      over list:
                                        vs
                                      with starting value:
                                       1);v)
       ∈ ℤ) 
     supposing no_repeats(ℤ List;v)
4. p : iPolynomial()
5. no_repeats(ℤ List;[u / v])
6. f : ℤ ⟶ ℤ
⊢ int_term_value(f;ipolynomial-term(filter(λm.((list-deq(IntDeq) u (snd(m))) ∨bsnd(m) ∈b v);p)))
= linearization(p;[u / v]) ⋅ [accumulate (with value x and list item v):
                               x * (f v)
                              over list:
                                u
                              with starting value:
                               1) / 
                              map(λvs.accumulate (with value x and list item v):
                                       x * (f v)
                                      over list:
                                        vs
                                      with starting value:
                                       1);v)]
∈ ℤ
BY
{ (Unfold `linearization` 0 THEN Reduce 0 THEN Fold `linearization` 0⋅) }
1
1. u : ℤ List
2. v : ℤ List List
3. ∀[p:iPolynomial()]
     ∀f:ℤ ⟶ ℤ
       (int_term_value(f;ipolynomial-term(filter(λm.snd(m) ∈b v;p)))
       = linearization(p;v) ⋅ map(λvs.accumulate (with value x and list item v):
                                       x * (f v)
                                      over list:
                                        vs
                                      with starting value:
                                       1);v)
       ∈ ℤ) 
     supposing no_repeats(ℤ List;v)
4. p : iPolynomial()
5. no_repeats(ℤ List;[u / v])
6. f : ℤ ⟶ ℤ
⊢ int_term_value(f;ipolynomial-term(filter(λm.((list-deq(IntDeq) u (snd(m))) ∨bsnd(m) ∈b v);p)))
= ((poly-coeff-of(u;p) * accumulate (with value x and list item v): x * (f v)over list:  uwith starting value: 1))
  + linearization(p;v) ⋅ map(λvs.accumulate (with value x and list item v):
                                  x * (f v)
                                 over list:
                                   vs
                                 with starting value:
                                  1);v))
∈ ℤ
Latex:
Latex:
1.  u  :  \mBbbZ{}  List
2.  v  :  \mBbbZ{}  List  List
3.  \mforall{}[p:iPolynomial()]
          \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}
              (int\_term\_value(f;ipolynomial-term(filter(\mlambda{}m.snd(m)  \mmember{}\msubb{}  v;p)))
              =  linearization(p;v)  \mcdot{}  map(\mlambda{}vs.accumulate  (with  value  x  and  list  item  v):
                                                                              x  *  (f  v)
                                                                            over  list:
                                                                                vs
                                                                            with  starting  value:
                                                                              1);v)) 
          supposing  no\_repeats(\mBbbZ{}  List;v)
4.  p  :  iPolynomial()
5.  no\_repeats(\mBbbZ{}  List;[u  /  v])
6.  f  :  \mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}
\mvdash{}  int\_term\_value(f;ipolynomial-term(filter(\mlambda{}m.((list-deq(IntDeq)  u  (snd(m)))  \mvee{}\msubb{}snd(m)  \mmember{}\msubb{}  v);p)))
=  linearization(p;[u  /  v])  \mcdot{}  [accumulate  (with  value  x  and  list  item  v):
                                                              x  *  (f  v)
                                                            over  list:
                                                                u
                                                            with  starting  value:
                                                              1)  / 
                                                            map(\mlambda{}vs.accumulate  (with  value  x  and  list  item  v):
                                                                              x  *  (f  v)
                                                                            over  list:
                                                                                vs
                                                                            with  starting  value:
                                                                              1);v)]
By
Latex:
(Unfold  `linearization`  0  THEN  Reduce  0  THEN  Fold  `linearization`  0\mcdot{})
Home
Index